What Is Nuclear Medicine?

Nuclear Medicine

Nuclear medicine is a specialized area of radiology that uses very small amounts of radioactive materials, or radiopharmaceuticals, to examine organ function and structure. Nuclear medicine imaging is a combination of many different disciplines. These include chemistry, physics, mathematics, computer technology, and medicine. This branch of radiology is often used to help diagnose and treat abnormalities very early in the progression of a disease, such as thyroid cancer.

Download PDF Brochure of Study, Click Here!

Because X-rays pass through soft tissue, such as intestines, muscles, and blood vessels, these tissues are difficult to visualize on a standard X-ray, unless a contrast agent is used. This allows the tissue to be seen more clearly. Nuclear imaging enables visualization of organ and tissue structure as well as function. The extent to which a radiopharmaceutical is absorbed, or "taken up," by a particular organ or tissue may indicate the level of function of the organ or tissue being studied. Thus, diagnostic X-rays are used primarily to study anatomy. Nuclear imaging is used to study organ and tissue function.

Nuclear medicine is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear medicine imaging, in a sense, is "radiology done inside out" or "endoradiology" because it records radiation emitting from within the body rather than radiation that is generated by external sources like X-rays. In addition, nuclear medicine scans differ from radiology, as the emphasis is not on imaging anatomy, but on the function. For such reason, it is called a physiological imaging modality. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) scans are the two most common imaging modalities in nuclear medicine


The end result of the nuclear medicine imaging process is a "dataset" comprising one or more images. In multi-image datasets the array of images may represent a time sequence (i.e. cine or movie) often called a "dynamic" dataset, a cardiac gated time sequence, or a spatial sequence where the gamma-camera is moved relative to the patient. SPECT (single photon emission computed tomography) is the process by which images acquired from a rotating gamma-camera are reconstructed to produce an image of a "slice" through the patient at a particular position. A collection of parallel slices form a slice-stack, a three-dimensional representation of the distribution of radionuclide in the patient.

The nuclear medicine computer may require millions of lines of source code to provide quantitative analysis packages for each of the specific imaging techniques available in nuclear medicine.

Want to know more about Nuclear Medicine??? Just go through the Link –

For more info, get sample PDF copy of this study Here!!