Metabolomics: The Future is Here
Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprints that specific cellular processes leave behind", the study of their small-molecule metabolite profiles.
Download PDF Brochure of Study, Click Here
Key applications
Toxicity assessment/toxicology by metabolic profiling (especially of urine or blood plasma samples) detects the physiological changes caused by toxic insult of a chemical (or mixture of chemicals). In many cases, the observed changes can be related to specific syndromes, e.g. a specific lesion in liver or kidney. This is of particular relevance to pharmaceutical companies wanting to test the toxicity of potential drug candidates: if a compound can be eliminated before it reaches clinical trials on the grounds of adverse toxicity, it saves the enormous expense of the trials.
For functional genomics, metabolomics can be an excellent tool for determining the phenotype caused by a genetic manipulation, such as gene deletion or insertion. Sometimes this can be a sufficient goal in itself—for instance, to detect any phenotypic changes in a genetically modified plant intended for human or animal consumption. More exciting is the prospect of predicting the function of unknown genes by comparison with the metabolic perturbations caused by deletion/insertion of known genes. Such advances are most likely to come from model organisms such as Saccharomyces cerevisiae and Arabidopsis thaliana. The Cravatt laboratory at The Scripps Research Institute has recently applied this technology to mammalian systems, identifying the N-acyltaurines as previously uncharacterized endogenous substrates for the enzyme fatty acid amide hydrolase (FAAH) and the monoalkylglycerol ethers (MAGEs) as endogenous substrates for the uncharacterized hydrolase KIAA1363.
Metabologenomics is a novel approach to integrate metabolomics and genomics data by correlating microbial-exported metabolites with predicted biosynthetic genes. This bioinformatics-based pairing method enables natural product discovery at a larger-scale by refining non-targeted metabolomic analyses to identify small molecules with related biosynthesis and to focus on those that may not have previously well known structures.
Fluxomics is a further development of metabolomics. The disadvantage of metabolomics is that it only provides the user with steady-state level information, while fluxomics determines the reaction rates of metabolic reactions and can trace metabolites in a biological system over time.
Nutrigenomics is a generalised term which links genomics, transcriptomics, proteomics and metabolomics to human nutrition. In general a metabolome in a given body fluid is influenced by endogenous factors such as age, sex, body composition and genetics as well as underlying pathologies. The large bowel microflora are also a very significant potential confounder of metabolic profiles and could be classified as either an endogenous or exogenous factor. The main exogenous factors are diet and drugs. Diet can then be broken down to nutrients and non-nutrients. Metabolomics is one means to determine a biological endpoint, or metabolic fingerprint, which reflects the balance of all these forces on an individual's metabolism.