Translational Bioinformatics: Data Science and Knowledge Representation in Healthcare
Healthcare Informatics on High
Translational Bioinformatics (TBI) is a relatively new field that surfaced in the year of 2000 when human genome sequence was released. The commonly used definition of TBI is lengthy and could be found on the AMIA website.
Download PDF Brochure of Study, Click Here
In simpler terms, TBI could be defined as a collection of colossal amounts of health related data (biomedical and genomic) and translation of the data into individually tailored clinical entities. Today, TBI field is categorized into four major themes that are briefly described below:
Clinical big data is a collection of electronic health records that are used for innovations. The evidence-based approach that is currently practiced in medicine is suggested to be merged with the practice-based medicine to achieve better outcomes for patients.
As CEO of California-based cognitive computing firm Apixio, Darren Schutle, explains that the care can be better fitted to the patient if the data could be collected from various medical records, merged, and analyzed. Further, the combination of similar profiles can serve as a basis for personalized medicine pointing to what works and what does not for certain condition.
Genomic data are used to identify the genes involvement in unknown or rare conditions/syndromes. Currently, the most vigorous area of using genomics is oncology. The identification of genomic sequencing of cancer may define reasons of drug(s) sensitivity and resistance during oncological treatment processes.
Repurposing of the drug is an appealing idea that allows the pharmaceutical companies to sell an already approved drug to treat a different condition/disease that the drug was not initially approved for by the FDA. The observation of “molecular signatures in disease and compare those to signatures observed in cells” points to the possibility of a drug ability to cure and/or relieve symptoms of a disease.
In the US, several companies offer direct-to-consumer (DTC) genetic testing. The company that performs the majority of testing is called 23andMe. Utilizing genetic testing in health care raises many ethical, legal and social concerns; one of the main questions is whether the health care providers are ready to include patient-supplied genomic information while providing care that is unbiased (despite the intimate genomic knowledge) and a high quality. The documented examples of incorporating such information into a health care delivery showed both positive and negative impacts on the overall health care related outcomes.