December 8, 2020

Computational Neuroscience in Bioinformatics

Computational neuroscience (also known as theoretical neuroscience or mathematical neuroscience) is a branch of neuroscience which employs mathematical models, theoretical analysis and abstractions of the brain to understand the principles that govern the development, structure, physiology and cognitive abilities of the nervous system.

Download PDF Brochure of Study, Click Here!

Computational neuroscience focuses on the description of biologically plausible neurons (and neural systems) and their physiology and dynamics, and it is therefore not directly concerned with biologically unrealistic models used in connectionism, control theory, cybernetics, quantitative psychology, machine learning, artificial neural networks, artificial intelligence and computational learning theory; although mutual inspiration exists and sometimes there is no strict limit between fields, with model abstraction in computational neuroscience depending on research scope and the granularity at which biological entities are analyzed.

Research in computational neuroscience can be roughly categorized into several lines of inquiry. Most computational neuroscientists collaborate closely with experimentalists in analyzing novel data and synthesizing new models of biological phenomena.

Single-neuron modeling

Even single neurons have complex biophysical characteristics and can perform computations (e.g.[20]). Hodgkin and Huxley's original model only employed two voltage-sensitive currents (Voltage sensitive ion channels are glycoprotein molecules which extend through the lipid bilayer, allowing ions to traverse under certain conditions through the axolemma), the fast-acting sodium and the inward-rectifying potassium.

Development, axonal patterning, and guidance

Computational neuroscience aims to address a wide array of questions. How do axons and dendrites form during development? How do axons know where to target and how to reach these targets? How do neurons migrate to the proper position in the central and peripheral systems? How do synapses form? We know from molecular biology that distinct parts of the nervous system release distinct chemical cues, from growth factors to hormones that modulate and influence the growth and development of functional connections between neurons.

Get full information and PDF sample of Computational Neuroscience in Bioinformatics

Source: theinsightpartners, wiki