July 6, 2020

CRISPR: A Game-Changing Genetic Engineering Technique

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology is a simple but powerful tool for genome editing. This tool enables life science researchers to easily edit DNA sequences and modify gene function. It has many potential applications include correcting genetic defects, treating and preventing the spread of diseases and improving crops.

By delivering the CRISPR enzyme Cas9 nuclease coupled with synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, that allows existing genes to be removed or add new ones.

Download PDF and Read More Here

source: freepik

Biogenesis

CRISPR-RNA (crRNA), which later guides the Cas nuclease to the target during the interference step, must be generated from the CRISPR sequence. The crRNA is initially transcribed as part of a single long transcript encompassing much of the CRISPR array. This transcript is then cleaved by Cas proteins to form crRNAs. The mechanism to produce crRNAs differs among CRISPR/Cas systems.

In type I-E and type I-F systems, the proteins Cas6e and Cas6f respectively, recognise stem-loops created by the pairing of identical repeats that flank the crRNA. These Cas proteins cleave the longer transcript at the edge of the paired region, leaving a single crRNA along with a small remnant of the paired repeat region.

CRISPR gene editing

CRISPR technology has been applied in the food and farming industries to engineer probiotic cultures and to immunize industrial cultures (for yogurt, for instance) versus infections. It is also being used in crops to enhance yield, drought tolerance and nutritional homes.[155]

By the end of 2014 some 1000 research papers had been published that mentioned CRISPR. The technology had been used to functionally inactivate genes in human cell lines and cells, to study Candida albicans, to modify yeasts used to make biofuels and to genetically modify crop strains. CRISPR can also be used to change mosquitos so they cannot transmit diseases such as malaria. CRISPR based approaches utilizing Cas12a have recently been utilized in the successful modification of a broad number of plant species.