June 22, 2023

πŸ’ŽΠ”Π΅ΠΏΠ»ΠΎΠΈΠΌ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΡŽ Π² LayerZero ΠΈ пСрСгоняСм ΠΈΠ· Arbitrum Nova (Π³Π°ΠΉΠ΄ для ΠΈΠ·Π±Ρ€Π°Π½Π½Ρ‹Ρ…)

Π’ этом Π³Π°ΠΉΠ΄Π΅ я Ρ…ΠΎΡ‡Ρƒ Π²Π°ΠΌ Ρ€Π°ΡΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ свои ΡˆΠ°Π½ΡΡ‹ Π½Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΆΠΈΡ€Π½ΠΎΠ³ΠΎ Π΄Ρ€ΠΎΠΏΠ° сразу ΠΎΡ‚ Π΄Π²ΡƒΡ… Ρ‚ΠΎΠΏΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΎΠ²: LayerZero ΠΈ Arbitrum Nova. ΠœΡ‹ ΠΏΡ€ΠΎΠ΄Π΅Π»Π°Π΅ΠΌ с Π²Π°ΠΌΠΈ Ρ‚Π°ΠΊΠΈΠ΅ активности, ΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½ΠΈΠΊΡ‚ΠΎ Π΅Ρ‰Π΅ Π½Π΅ рассказывал Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² русскоязычном сСгмСнтС, Π½ΠΎ ΠΈ Π² англоязычном:
- Π·Π°Π΄Π΅ΠΏΠ»ΠΎΠΈΠΌ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ с использованиСм ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° LayerZero;
- ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅ΠΌ ΠΏΠ΅Ρ€ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ NFT ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ сСтями с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ LayerZero, Ρ‚Π΅ΠΌ самым повысив количСство активностСй Π² своСм кошСлькС ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ² Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ большого Π΄Ρ€ΠΎΠΏΠ°.
НИКВО И ΠΠ˜Π“Π”Π• Π½Π΅ Π΄Π°Π²Π°Π» Ρ‚Π°ΠΊΡƒΡŽ ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡŽ ΠΈ Π½Π΅ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π» Ρ‚Π°ΠΊ наглядно процСсс дСплоя смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° с использованиСм ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° LayerZero, Π΄Π° ΠΏΡ€ΠΈ Ρ‚ΠΎΠΌ Π΅Ρ‰Π΅ ΠΈ Π² сСти Arbitrum Nova! LayerZero Π½Π°Ρ‡Π°Π» ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒ ΡΠ΅Ρ‚ΡŒ Arbitrum Nova совсСм Π½Π΅Π΄Π°Π²Π½ΠΎ, поэтому сСйчас Π»ΡƒΡ‡ΡˆΠ΅Π΅ врСмя Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΡΠ²ΠΈΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² этих Π΄Π²ΡƒΡ… ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π°Ρ….

Π§Ρ‚ΠΎ ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ Π΄Π΅Π»Π°Ρ‚ΡŒ?

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ ΡƒΡΠ»ΠΎΠΆΠ½ΡΡ‚ΡŒ Π³Π°ΠΉΠ΄, Π±ΡƒΠ΄Π΅ΠΌ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π² Π΄Π²ΡƒΡ… сСтях: BNB Chain ΠΈ Arbitrum Nova.

План дСйствий ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ:

  1. ДобавляСм Π² кошСлСк (Π² ΠΌΠΎΠ΅ΠΌ случаС Metamask) сСти BNB ΠΈ Arbitrum Nova;
  2. ПополняСм наш кошСлСк Π² сСтях BNB ΠΈ Arbitrum Nova;
  3. Π—Π°Π³Ρ€ΡƒΠΆΠ°Π΅ΠΌ ΠΌΠ΅Ρ‚Π°Π΄Π°Π½Π½Ρ‹Π΅ для NFT Π² Π΄Π΅Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π΅ Ρ„Π°ΠΉΠ»ΠΎΠ² IPFS;
  4. Π”Π΅ΠΏΠ»ΠΎΠΈΠΌ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ с использованиСм Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ LayerZero Π² сСти BNB ΠΈ Π² сСти Arbitrum Nova;
  5. ДобавляСм ΠΊΠΎΠ΄ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° Π² Π±Π»ΠΎΠΊΡ‡Π΅ΠΉΠ½ эксплорСры BNB ΠΈ Arbitrum Nova.
  6. ΠœΠΈΠ½Ρ‚ΠΈΠΌ NFT Π² сСти Arbitrum Nova;
  7. ΠŸΠ΅Ρ€Π΅ΡΡ‹Π»Π°Π΅ΠΌ NFT ΠΈΠ· сСти Arbitrum Nova Π² ΡΠ΅Ρ‚ΡŒ BNB с использованиСм ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° LayerZero, Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ встроСны Π² смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚ нашСй NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ.

ΠŸΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ°: добавляСм сСти BNB ΠΈ Arbitrum Nova Π² кошСлСк

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ Π½Π° сайт ChainList, ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ кошСлСк - свСрху справа ΠΊΠ½ΠΎΠΏΠΊΠ° Connect Wallet.

Π’Π²ΠΎΠ΄ΠΈΠΌ Π² поискС Binance, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Add to Metamask Π² Π±Π»ΠΎΠΊΠ΅ Binance Smart Chain Mainnet.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ Π½Π°ΡˆΠΈΡ… Ρ‚Ρ€Π°Π½Π·Π°ΠΊΡ†ΠΈΠΉ Π² сСти BNB, Π½ΡƒΠΆΠ½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ RPC адрСс Π² настройках кошСлька. Для этого ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅ΠΌ кошСлСк, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π½Π° Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ -> Expand view.

КликаСм ΠΏΠΎ ΠΊΡ€ΡƒΠ³Π»ΠΎΠΉ ΠΈΠΊΠΎΠ½ΠΊΠ΅ -> Settings.

Π’ Ρ€Π°Π·Π΄Π΅Π»Π΅ Settings для сСти BNB Chain прописываСм New RPC URL.

https://rpc.ankr.com/bsc

Π’ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅ добавляСм ΡΠ΅Ρ‚ΡŒ Arbitrum Nova Π½Π° сайтС Chainlist. ΠœΠ΅Π½ΡΡ‚ΡŒ RPC для Arbitrum Nova Π½Π΅ Π½ΡƒΠΆΠ½ΠΎ.

ΠŸΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ°: пополняСм кошСльки Π² Π½ΡƒΠΆΠ½Ρ‹Ρ… сСтях

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠΏΠ»Π½ΠΈΡ‚ΡŒ кошСлСк Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ (Π³Π»Π°Π²Π½Ρ‹ΠΌΠΈ) ΠΌΠΎΠ½Π΅Ρ‚Π°ΠΌΠΈ Π² Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… сСтях. Для сСти BNB Chain - это BNB, ΠΌΠΎΠΆΠ½ΠΎ ΠΊΡƒΠΏΠΈΡ‚ΡŒ практичСски Π½Π° любой Π±ΠΈΡ€ΠΆΠ΅ (Binance, ByBit, Mexc ΠΈ Ρ‚.Π΄.), ΡΠΎΠ²Π΅Ρ‚ΡƒΡŽ пСрСвСсти 0.08 BNB для ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ Π°ΠΊΠΊΠ°ΡƒΠ½Ρ‚Π°, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ…Π²Π°Ρ‚ΠΈΠ»ΠΎ Π΄Π΅Π½Π΅Π³. Для своих ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π°ΠΊΠΊΠ°ΡƒΠ½Ρ‚ΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·Π²Π°Ρ‚ΡŒ мСньшиС суммы Π² зависимости ΠΎΡ‚ рассчСтов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρƒ Ρƒ вас ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈΡΡŒ.

Для сСти Arbitrum Nova нативная ΠΌΠΎΠ½Π΅Ρ‚Π° - это ETH. Arbitrum Nova - это ΡΠ΅Ρ‚ΡŒ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ уровня (Layer 2) для сСти Ethereum, поэтому Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ кошСлСк ΠΌΠΎΠ½Ρ‚Π°ΠΌΠΈ ETH, Π½ΠΎ Π½ΡƒΠΆΠ½Ρ‹ ΠΎΠ½ΠΈ Π½Π°ΠΌ Π² сСти Arbitrum Nova. На ΠΌΠΎΠΌΠ΅Π½Ρ‚ написания Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³Π°ΠΉΠ΄Π° основныС Π±ΠΈΡ€ΠΆΠΈ Π½Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‚ ΡΠ΅Ρ‚ΡŒ Arbitrum Nova, поэтому ΠΌΡ‹ обмСняСм 0.04 BNB Π½Π° ETH Π² сСти BNB, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° 1inch.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ ΠΌΠΎΠ½Π΅Ρ‚Ρ‹ ETH Π² сСти BNB Chain, Π½ΡƒΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²Ρ‚ΡŒ адрСс смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° Π² кошСлькС. Для этого ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅ΠΌ Metamask, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π²Π½ΠΈΠ·Ρƒ Import Tokens.

ВставляСм адрСс ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π°:

0x2170ed0880ac9a755fd29b2688956bd959f933f8

ОТидаСмся ΠΏΠΎΠ΄Π³Ρ€ΡƒΠ·ΠΊΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π² Π΄Π²ΡƒΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… Π³Ρ€Π°Ρ„Π°Ρ…, ΠΊΠ»ΠΈΠΊΠ°Π΅ΠΌ Add custom token.

Π—Π°Ρ‚Π΅ΠΌ Import tokens.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΈΠ΄Π΅ΠΌ Π² Orbiter.finance - это ΠΎΡ‡Π΅Π½ΡŒ пСрспСктивный мост для пСрСсылки Π°ΠΊΡ‚ΠΈΠ²ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ сСтями. ВзаимодСйстуя с этим ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΌΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅ΠΌ ΡˆΠ°Π½Ρ‹ Π½Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π² Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π΄Ρ€ΠΎΠΏΠ° ΠΎΡ‚ самого Orbiter.finance, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρƒ Π½Π΅Π³ΠΎ Π΅Ρ‰Π΅ Π½Π΅Ρ‚ своСй ΠΌΠΎΠ½Π΅Ρ‚Ρ‹. ΠžΡ‚ΠΏΡ€Π°Π²Π»ΡΠ΅ΠΌ всС свои ΠΌΠΎΠ½Π΅Ρ‚Ρ‹ ETH ΠΈΠ· сСти BNB Π² ΡΠ΅Ρ‚ΡŒ Arbitrum Nova.

Π—Π°Π³Ρ€ΡƒΠΆΠ°Π΅ΠΌ ΠΌΠ΅Ρ‚Π°Π΄Π°Π½Π½Ρ‹Π΅ для NFT Π² Π΄Π΅Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π΅ Ρ„Π°ΠΉΠ»ΠΎΠ² IPFS

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ Π² сСрвис Pinata - ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠ°, которая позволяСт Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ с IPFS Ρ…Ρ€Π°Π½ΠΈΠ»ΠΈΡ‰Π΅ΠΌ. РСгистрируСмся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ½ΠΎΠΏΠΊΠΈ Start building ΠΈΠ»ΠΈ Π²Ρ…ΠΎΠ΄ΠΈΠΌ Π² свой Π°ΠΊΠΊΠ°ΡƒΠ½Ρ‚Ρƒ (ΠΊΠ½ΠΎΠΏΠΊΠ° Log in), Ссли Π²Ρ‹ ΡƒΠΆΠ΅ зарСгистрированы.

КликаСм Add Files -> File, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π·Π°Π³Ρ€ΡƒΠ·ΠΈΡ‚ΡŒ свою ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ для Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΉ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ.

Π’Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ Π½ΡƒΠΆΠ½ΡƒΡŽ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ (ΠΊΠ½ΠΎΠΏΠΊΠ° Select file) -> Upload -> ΠΆΠ΄Π΅ΠΌ, ΠΏΠΎΠΊΠ° Ρ„Π°ΠΉΠ» загрузится.

БохраняСм CID нашСй Π·Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠΉ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ, ΠΎΠ½ Π½Π°ΠΌ Π΅Ρ‰Π΅ понадобится.

Π‘ΠΎΠ·Π΄Π°Π΅ΠΌ json Ρ„Π°ΠΉΠ» ΠΈ вставляСм Ρ‚ΡƒΠ΄Π° ΡΠΎΠ΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΊΠΎΠ΄. Π§Ρ‚ΠΎΠ±Ρ‹ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ json Ρ„Π°ΠΉΠ» Ρƒ сСбя Π½Π° ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π΅, достаточно ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ Π½ΠΎΠ²Ρ‹ΠΉ тСкстовый Ρ„Π°ΠΉΠ», Π²ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€ΡŒ Ρ„Π°ΠΉΠ»Π° ΠΊΠΎΠ΄, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ я ΠΏΡ€ΠΈΠ²Π΅Π» Π½ΠΈΠΆΠ΅ (со своими измСнСниями), ΡΠΎΡ…Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠΈ ΠΏΠΎΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ Ρ„Π°ΠΉΠ»Π° с ".txt" Π½Π° ".json". Если Ρƒ вас Π½Π΅ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡΡ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ Ρ„Π°ΠΉΠ»ΠΎΠ², Π½Π΅ ΠΏΡ‹Ρ‚Π°ΠΉΡ‚Π΅ΡΡŒ Π΄ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ".json" Π² Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Ρ„Π°ΠΉΠ»Π°, посмотритС Π² Google, ΠΊΠ°ΠΊ Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΡ Ρ„Π°ΠΉΠ»ΠΎΠ² для вашСй ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ систСмы.

Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ 3 значСния:

  1. "At Least You Tried" - имя NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ;
  2. "1000 NFTs travelling across different chains" - описаниС NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ;
  3. "ipfs://QmZNw7zqr74QwACtF771CGiSfCk6yvVtLGjNTWP9ZfXZFX" - здСсь вмСсто QmZNw7zqr74QwACtF771CGiSfCk6yvVtLGjNTWP9ZfXZFX Π½ΡƒΠΆΠ½ΠΎ Π²ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ CID своСй ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π²Ρ‹ Π·Π°Π³Ρ€ΡƒΠ·ΠΈΠ»ΠΈ Π½Π° Pinata.
{
    "name": "At Least You Tried",
    "description": "1000 NFTs travelling across different chains",
    "image": "ipfs://QmZNw7zqr74QwACtF771CGiSfCk6yvVtLGjNTWP9ZfXZFX",
    "attributes": []
}

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π·Π°Π³Ρ€ΡƒΠΆΠ°Π΅ΠΌ этот json Ρ„Π°ΠΉΠ» Π½Π° Pinata Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ Π·Π°Π³Ρ€ΡƒΠΆΠ°Π»ΠΈ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ.

БоххраняСм CID Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‡Ρ‚ΠΎ Π·Π°Π³Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ„Π°ΠΉΠ»Π°, ΠΎΠ½ Π½Π°ΠΌ скоро понадобится.

Π”Π΅ΠΏΠ»ΠΎΠΈΠΌ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π² сСти BNB ΠΈ Π² сСти Arbitrum Nova

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊ Π³Π»Π°Π²Π½ΠΎΠΉ части этого Π³Π°ΠΉΠ΄Π° - Π΄Π΅ΠΏΠ»ΠΎΠΉ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° ΠΈ взаимодСйствиС с Π½ΠΈΠΌ Π² сСтях BNB ΠΈ Arbitrum Nova. ΠžΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅ΠΌ сайт Remix - это ΠΎΠ½Π»Π°ΠΉΠ½ ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ для написания ΠΈ дСплоя смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ².

НаТимам ΠΏΡ€Π°Π²ΠΎΠΉ ΠΊΠ½ΠΎΠΏΠΊΠΎΠΉ ΠΌΡ‹ΡˆΠΈ Π½Π° ΠΏΠ°ΠΏΠΊΡƒ contracts -> New File

Π‘ΠΎΠ·Π΄Π°Π΅ΠΌ Ρ„Π°ΠΉΠ» с Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ LayerZeroNFT.sol. ВставляСм Π² Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΎΡ€ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΊΠΎΠ΄. Π­Ρ‚ΠΎ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΠ΄ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ с Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΎΠΉ ΠΎΡ‚ LayerZero. Π― Π΅Π³ΠΎ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΈΠ» для этого Π³Π°ΠΉΠ΄Π°, использовав Π»ΡƒΡ‡ΡˆΠΈΠ΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ для написания смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ² с использованиСм ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° LayerZero ΠΈ для нашСго с Π²Π°ΠΌΠΈ удобства сдСлал ΠΎΠ΄ΠΈΠ½ большой тСкстовый Ρ„Π°ΠΉΠ» с ΠΊΠΎΠ΄ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΡ‹ смоТСм с Π»Π΅Π³ΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ для дСплоя Π² Π»ΡŽΠ±Ρ‹Ρ… EVM совмСстимых сСтях, Π° Π·Π°Ρ‚Π΅ΠΌ (это ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½ΠΎ!) с Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ Π»Π΅Π³ΠΊΠΎΡΡ‚ΡŒΡŽ смоТСм Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠ΄ этого смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° Π² Π±Π»ΠΎΠΊΡ‡Π΅ΠΉΠ½ эксплорСрах, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»ΠΈ ΠΌΠΎΠ³Π»ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ с функциями нашСй NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΌΠΈΠ½Ρ‚Π° Π½ΠΎΠ²Ρ‹Ρ… NFT.

//SPDX-License-Identifier: MIT

// File: @openzeppelin/contracts/utils/math/SignedMath.sol


// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// File: @openzeppelin/contracts/utils/math/Math.sol


// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // β†’ `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // β†’ `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// File: @openzeppelin/contracts/utils/Strings.sol


// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;



/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// File: @openzeppelin/contracts/utils/Address.sol


// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// File: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol


// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// File: @openzeppelin/contracts/security/ReentrancyGuard.sol


// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// File: contracts/lz-contracts/util/ExcessivelySafeCall.sol


pragma solidity >=0.7.6;

library ExcessivelySafeCall {
    uint256 constant LOW_28_MASK =
    0x00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff;

    /// @notice Use when you _really_ really _really_ don't trust the called
    /// contract. This prevents the called contract from causing reversion of
    /// the caller in as many ways as we can.
    /// @dev The main difference between this and a solidity low-level call is
    /// that we limit the number of bytes that the callee can cause to be
    /// copied to caller memory. This prevents stupid things like malicious
    /// contracts returning 10,000,000 bytes causing a local OOG when copying
    /// to memory.
    /// @param _target The address to call
    /// @param _gas The amount of gas to forward to the remote contract
    /// @param _maxCopy The maximum number of bytes of returndata to copy
    /// to memory.
    /// @param _calldata The data to send to the remote contract
    /// @return success and returndata, as `.call()`. Returndata is capped to
    /// `_maxCopy` bytes.
    function excessivelySafeCall(
        address _target,
        uint256 _gas,
        uint16 _maxCopy,
        bytes memory _calldata
    ) internal returns (bool, bytes memory) {
        // set up for assembly call
        uint256 _toCopy;
        bool _success;
        bytes memory _returnData = new bytes(_maxCopy);
        // dispatch message to recipient
        // by assembly calling "handle" function
        // we call via assembly to avoid memcopying a very large returndata
        // returned by a malicious contract
        assembly {
            _success := call(
            _gas, // gas
            _target, // recipient
            0, // ether value
            add(_calldata, 0x20), // inloc
            mload(_calldata), // inlen
            0, // outloc
            0 // outlen
            )
        // limit our copy to 256 bytes
            _toCopy := returndatasize()
            if gt(_toCopy, _maxCopy) {
                _toCopy := _maxCopy
            }
        // Store the length of the copied bytes
            mstore(_returnData, _toCopy)
        // copy the bytes from returndata[0:_toCopy]
            returndatacopy(add(_returnData, 0x20), 0, _toCopy)
        }
        return (_success, _returnData);
    }

    /// @notice Use when you _really_ really _really_ don't trust the called
    /// contract. This prevents the called contract from causing reversion of
    /// the caller in as many ways as we can.
    /// @dev The main difference between this and a solidity low-level call is
    /// that we limit the number of bytes that the callee can cause to be
    /// copied to caller memory. This prevents stupid things like malicious
    /// contracts returning 10,000,000 bytes causing a local OOG when copying
    /// to memory.
    /// @param _target The address to call
    /// @param _gas The amount of gas to forward to the remote contract
    /// @param _maxCopy The maximum number of bytes of returndata to copy
    /// to memory.
    /// @param _calldata The data to send to the remote contract
    /// @return success and returndata, as `.call()`. Returndata is capped to
    /// `_maxCopy` bytes.
    function excessivelySafeStaticCall(
        address _target,
        uint256 _gas,
        uint16 _maxCopy,
        bytes memory _calldata
    ) internal view returns (bool, bytes memory) {
        // set up for assembly call
        uint256 _toCopy;
        bool _success;
        bytes memory _returnData = new bytes(_maxCopy);
        // dispatch message to recipient
        // by assembly calling "handle" function
        // we call via assembly to avoid memcopying a very large returndata
        // returned by a malicious contract
        assembly {
            _success := staticcall(
            _gas, // gas
            _target, // recipient
            add(_calldata, 0x20), // inloc
            mload(_calldata), // inlen
            0, // outloc
            0 // outlen
            )
        // limit our copy to 256 bytes
            _toCopy := returndatasize()
            if gt(_toCopy, _maxCopy) {
                _toCopy := _maxCopy
            }
        // Store the length of the copied bytes
            mstore(_returnData, _toCopy)
        // copy the bytes from returndata[0:_toCopy]
            returndatacopy(add(_returnData, 0x20), 0, _toCopy)
        }
        return (_success, _returnData);
    }

    /**
     * @notice Swaps function selectors in encoded contract calls
     * @dev Allows reuse of encoded calldata for functions with identical
     * argument types but different names. It simply swaps out the first 4 bytes
     * for the new selector. This function modifies memory in place, and should
     * only be used with caution.
     * @param _newSelector The new 4-byte selector
     * @param _buf The encoded contract args
     */
    function swapSelector(bytes4 _newSelector, bytes memory _buf)
    internal
    pure
    {
        require(_buf.length >= 4);
        uint256 _mask = LOW_28_MASK;
        assembly {
        // load the first word of
            let _word := mload(add(_buf, 0x20))
        // mask out the top 4 bytes
        // /x
            _word := and(_word, _mask)
            _word := or(_newSelector, _word)
            mstore(add(_buf, 0x20), _word)
        }
    }
}

// File: contracts/lz-contracts/util/BytesLib.sol


/*
 * @title Solidity Bytes Arrays Utils
 * @author GonΓ§alo SΓ‘ <[email protected]>
 *
 * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity.
 *      The library lets you concatenate, slice and type cast bytes arrays both in memory and storage.
 */
pragma solidity >=0.8.0 <0.9.0;


library BytesLib {
    function concat(
        bytes memory _preBytes,
        bytes memory _postBytes
    )
    internal
    pure
    returns (bytes memory)
    {
        bytes memory tempBytes;

        assembly {
        // Get a location of some free memory and store it in tempBytes as
        // Solidity does for memory variables.
            tempBytes := mload(0x40)

        // Store the length of the first bytes array at the beginning of
        // the memory for tempBytes.
            let length := mload(_preBytes)
            mstore(tempBytes, length)

        // Maintain a memory counter for the current write location in the
        // temp bytes array by adding the 32 bytes for the array length to
        // the starting location.
            let mc := add(tempBytes, 0x20)
        // Stop copying when the memory counter reaches the length of the
        // first bytes array.
            let end := add(mc, length)

            for {
            // Initialize a copy counter to the start of the _preBytes data,
            // 32 bytes into its memory.
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
            // Increase both counters by 32 bytes each iteration.
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
            // Write the _preBytes data into the tempBytes memory 32 bytes
            // at a time.
                mstore(mc, mload(cc))
            }

        // Add the length of _postBytes to the current length of tempBytes
        // and store it as the new length in the first 32 bytes of the
        // tempBytes memory.
            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

        // Move the memory counter back from a multiple of 0x20 to the
        // actual end of the _preBytes data.
            mc := end
        // Stop copying when the memory counter reaches the new combined
        // length of the arrays.
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

        // Update the free-memory pointer by padding our last write location
        // to 32 bytes: add 31 bytes to the end of tempBytes to move to the
        // next 32 byte block, then round down to the nearest multiple of
        // 32. If the sum of the length of the two arrays is zero then add
        // one before rounding down to leave a blank 32 bytes (the length block with 0).
            mstore(0x40, and(
            add(add(end, iszero(add(length, mload(_preBytes)))), 31),
            not(31) // Round down to the nearest 32 bytes.
            ))
        }

        return tempBytes;
    }

    function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal {
        assembly {
        // Read the first 32 bytes of _preBytes storage, which is the length
        // of the array. (We don't need to use the offset into the slot
        // because arrays use the entire slot.)
            let fslot := sload(_preBytes.slot)
        // Arrays of 31 bytes or less have an even value in their slot,
        // while longer arrays have an odd value. The actual length is
        // the slot divided by two for odd values, and the lowest order
        // byte divided by two for even values.
        // If the slot is even, bitwise and the slot with 255 and divide by
        // two to get the length. If the slot is odd, bitwise and the slot
        // with -1 and divide by two.
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)
            let newlength := add(slength, mlength)
        // slength can contain both the length and contents of the array
        // if length < 32 bytes so let's prepare for that
        // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
            switch add(lt(slength, 32), lt(newlength, 32))
            case 2 {
            // Since the new array still fits in the slot, we just need to
            // update the contents of the slot.
            // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length
                sstore(
                _preBytes.slot,
                // all the modifications to the slot are inside this
                // next block
                add(
                // we can just add to the slot contents because the
                // bytes we want to change are the LSBs
                fslot,
                add(
                mul(
                div(
                // load the bytes from memory
                mload(add(_postBytes, 0x20)),
                // zero all bytes to the right
                exp(0x100, sub(32, mlength))
                ),
                // and now shift left the number of bytes to
                // leave space for the length in the slot
                exp(0x100, sub(32, newlength))
                ),
                // increase length by the double of the memory
                // bytes length
                mul(mlength, 2)
                )
                )
                )
            }
            case 1 {
            // The stored value fits in the slot, but the combined value
            // will exceed it.
            // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

            // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

            // The contents of the _postBytes array start 32 bytes into
            // the structure. Our first read should obtain the `submod`
            // bytes that can fit into the unused space in the last word
            // of the stored array. To get this, we read 32 bytes starting
            // from `submod`, so the data we read overlaps with the array
            // contents by `submod` bytes. Masking the lowest-order
            // `submod` bytes allows us to add that value directly to the
            // stored value.

                let submod := sub(32, slength)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(
                sc,
                add(
                and(
                fslot,
                0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00
                ),
                and(mload(mc), mask)
                )
                )

                for {
                    mc := add(mc, 0x20)
                    sc := add(sc, 1)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
            default {
            // get the keccak hash to get the contents of the array
                mstore(0x0, _preBytes.slot)
            // Start copying to the last used word of the stored array.
                let sc := add(keccak256(0x0, 0x20), div(slength, 32))

            // save new length
                sstore(_preBytes.slot, add(mul(newlength, 2), 1))

            // Copy over the first `submod` bytes of the new data as in
            // case 1 above.
                let slengthmod := mod(slength, 32)
                let mlengthmod := mod(mlength, 32)
                let submod := sub(32, slengthmod)
                let mc := add(_postBytes, submod)
                let end := add(_postBytes, mlength)
                let mask := sub(exp(0x100, submod), 1)

                sstore(sc, add(sload(sc), and(mload(mc), mask)))

                for {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } lt(mc, end) {
                    sc := add(sc, 1)
                    mc := add(mc, 0x20)
                } {
                    sstore(sc, mload(mc))
                }

                mask := exp(0x100, sub(mc, end))

                sstore(sc, mul(div(mload(mc), mask), mask))
            }
        }
    }

    function slice(
        bytes memory _bytes,
        uint256 _start,
        uint256 _length
    )
    internal
    pure
    returns (bytes memory)
    {
        require(_length + 31 >= _length, "slice_overflow");
        require(_bytes.length >= _start + _length, "slice_outOfBounds");

        bytes memory tempBytes;

        assembly {
            switch iszero(_length)
            case 0 {
            // Get a location of some free memory and store it in tempBytes as
            // Solidity does for memory variables.
                tempBytes := mload(0x40)

            // The first word of the slice result is potentially a partial
            // word read from the original array. To read it, we calculate
            // the length of that partial word and start copying that many
            // bytes into the array. The first word we copy will start with
            // data we don't care about, but the last `lengthmod` bytes will
            // land at the beginning of the contents of the new array. When
            // we're done copying, we overwrite the full first word with
            // the actual length of the slice.
                let lengthmod := and(_length, 31)

            // The multiplication in the next line is necessary
            // because when slicing multiples of 32 bytes (lengthmod == 0)
            // the following copy loop was copying the origin's length
            // and then ending prematurely not copying everything it should.
                let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
                let end := add(mc, _length)

                for {
                // The multiplication in the next line has the same exact purpose
                // as the one above.
                    let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
                } lt(mc, end) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                    mstore(mc, mload(cc))
                }

                mstore(tempBytes, _length)

            //update free-memory pointer
            //allocating the array padded to 32 bytes like the compiler does now
                mstore(0x40, and(add(mc, 31), not(31)))
            }
            //if we want a zero-length slice let's just return a zero-length array
            default {
                tempBytes := mload(0x40)
            //zero out the 32 bytes slice we are about to return
            //we need to do it because Solidity does not garbage collect
                mstore(tempBytes, 0)

                mstore(0x40, add(tempBytes, 0x20))
            }
        }

        return tempBytes;
    }

    function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) {
        require(_bytes.length >= _start + 20, "toAddress_outOfBounds");
        address tempAddress;

        assembly {
            tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000)
        }

        return tempAddress;
    }

    function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) {
        require(_bytes.length >= _start + 1 , "toUint8_outOfBounds");
        uint8 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x1), _start))
        }

        return tempUint;
    }

    function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) {
        require(_bytes.length >= _start + 2, "toUint16_outOfBounds");
        uint16 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x2), _start))
        }

        return tempUint;
    }

    function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) {
        require(_bytes.length >= _start + 4, "toUint32_outOfBounds");
        uint32 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x4), _start))
        }

        return tempUint;
    }

    function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) {
        require(_bytes.length >= _start + 8, "toUint64_outOfBounds");
        uint64 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x8), _start))
        }

        return tempUint;
    }

    function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) {
        require(_bytes.length >= _start + 12, "toUint96_outOfBounds");
        uint96 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0xc), _start))
        }

        return tempUint;
    }

    function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) {
        require(_bytes.length >= _start + 16, "toUint128_outOfBounds");
        uint128 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x10), _start))
        }

        return tempUint;
    }

    function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) {
        require(_bytes.length >= _start + 32, "toUint256_outOfBounds");
        uint256 tempUint;

        assembly {
            tempUint := mload(add(add(_bytes, 0x20), _start))
        }

        return tempUint;
    }

    function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) {
        require(_bytes.length >= _start + 32, "toBytes32_outOfBounds");
        bytes32 tempBytes32;

        assembly {
            tempBytes32 := mload(add(add(_bytes, 0x20), _start))
        }

        return tempBytes32;
    }

    function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) {
        bool success = true;

        assembly {
            let length := mload(_preBytes)

        // if lengths don't match the arrays are not equal
            switch eq(length, mload(_postBytes))
            case 1 {
            // cb is a circuit breaker in the for loop since there's
            //  no said feature for inline assembly loops
            // cb = 1 - don't breaker
            // cb = 0 - break
                let cb := 1

                let mc := add(_preBytes, 0x20)
                let end := add(mc, length)

                for {
                    let cc := add(_postBytes, 0x20)
                // the next line is the loop condition:
                // while(uint256(mc < end) + cb == 2)
                } eq(add(lt(mc, end), cb), 2) {
                    mc := add(mc, 0x20)
                    cc := add(cc, 0x20)
                } {
                // if any of these checks fails then arrays are not equal
                    if iszero(eq(mload(mc), mload(cc))) {
                    // unsuccess:
                        success := 0
                        cb := 0
                    }
                }
            }
            default {
            // unsuccess:
                success := 0
            }
        }

        return success;
    }

    function equalStorage(
        bytes storage _preBytes,
        bytes memory _postBytes
    )
    internal
    view
    returns (bool)
    {
        bool success = true;

        assembly {
        // we know _preBytes_offset is 0
            let fslot := sload(_preBytes.slot)
        // Decode the length of the stored array like in concatStorage().
            let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2)
            let mlength := mload(_postBytes)

        // if lengths don't match the arrays are not equal
            switch eq(slength, mlength)
            case 1 {
            // slength can contain both the length and contents of the array
            // if length < 32 bytes so let's prepare for that
            // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage
                if iszero(iszero(slength)) {
                    switch lt(slength, 32)
                    case 1 {
                    // blank the last byte which is the length
                        fslot := mul(div(fslot, 0x100), 0x100)

                        if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) {
                        // unsuccess:
                            success := 0
                        }
                    }
                    default {
                    // cb is a circuit breaker in the for loop since there's
                    //  no said feature for inline assembly loops
                    // cb = 1 - don't breaker
                    // cb = 0 - break
                        let cb := 1

                    // get the keccak hash to get the contents of the array
                        mstore(0x0, _preBytes.slot)
                        let sc := keccak256(0x0, 0x20)

                        let mc := add(_postBytes, 0x20)
                        let end := add(mc, mlength)

                    // the next line is the loop condition:
                    // while(uint256(mc < end) + cb == 2)
                        for {} eq(add(lt(mc, end), cb), 2) {
                            sc := add(sc, 1)
                            mc := add(mc, 0x20)
                        } {
                            if iszero(eq(sload(sc), mload(mc))) {
                            // unsuccess:
                                success := 0
                                cb := 0
                            }
                        }
                    }
                }
            }
            default {
            // unsuccess:
                success := 0
            }
        }

        return success;
    }
}

// File: contracts/lz-contracts/interfaces/ILayerZeroUserApplicationConfig.sol



pragma solidity >=0.5.0;

interface ILayerZeroUserApplicationConfig {
    // @notice set the configuration of the LayerZero messaging library of the specified version
    // @param _version - messaging library version
    // @param _chainId - the chainId for the pending config change
    // @param _configType - type of configuration. every messaging library has its own convention.
    // @param _config - configuration in the bytes. can encode arbitrary content.
    function setConfig(uint16 _version, uint16 _chainId, uint _configType, bytes calldata _config) external;

    // @notice set the send() LayerZero messaging library version to _version
    // @param _version - new messaging library version
    function setSendVersion(uint16 _version) external;

    // @notice set the lzReceive() LayerZero messaging library version to _version
    // @param _version - new messaging library version
    function setReceiveVersion(uint16 _version) external;

    // @notice Only when the UA needs to resume the message flow in blocking mode and clear the stored payload
    // @param _srcChainId - the chainId of the source chain
    // @param _srcAddress - the contract address of the source contract at the source chain
    function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external;
}

// File: contracts/lz-contracts/interfaces/ILayerZeroEndpoint.sol



pragma solidity >=0.5.0;


interface ILayerZeroEndpoint is ILayerZeroUserApplicationConfig {
    // @notice send a LayerZero message to the specified address at a LayerZero endpoint.
    // @param _dstChainId - the destination chain identifier
    // @param _destination - the address on destination chain (in bytes). address length/format may vary by chains
    // @param _payload - a custom bytes payload to send to the destination contract
    // @param _refundAddress - if the source transaction is cheaper than the amount of value passed, refund the additional amount to this address
    // @param _zroPaymentAddress - the address of the ZRO token holder who would pay for the transaction
    // @param _adapterParams - parameters for custom functionality. e.g. receive airdropped native gas from the relayer on destination
    function send(uint16 _dstChainId, bytes calldata _destination, bytes calldata _payload, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable;

    // @notice used by the messaging library to publish verified payload
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source contract (as bytes) at the source chain
    // @param _dstAddress - the address on destination chain
    // @param _nonce - the unbound message ordering nonce
    // @param _gasLimit - the gas limit for external contract execution
    // @param _payload - verified payload to send to the destination contract
    function receivePayload(uint16 _srcChainId, bytes calldata _srcAddress, address _dstAddress, uint64 _nonce, uint _gasLimit, bytes calldata _payload) external;

    // @notice get the inboundNonce of a lzApp from a source chain which could be EVM or non-EVM chain
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source chain contract address
    function getInboundNonce(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (uint64);

    // @notice get the outboundNonce from this source chain which, consequently, is always an EVM
    // @param _srcAddress - the source chain contract address
    function getOutboundNonce(uint16 _dstChainId, address _srcAddress) external view returns (uint64);

    // @notice gets a quote in source native gas, for the amount that send() requires to pay for message delivery
    // @param _dstChainId - the destination chain identifier
    // @param _userApplication - the user app address on this EVM chain
    // @param _payload - the custom message to send over LayerZero
    // @param _payInZRO - if false, user app pays the protocol fee in native token
    // @param _adapterParam - parameters for the adapter service, e.g. send some dust native token to dstChain
    function estimateFees(uint16 _dstChainId, address _userApplication, bytes calldata _payload, bool _payInZRO, bytes calldata _adapterParam) external view returns (uint nativeFee, uint zroFee);

    // @notice get this Endpoint's immutable source identifier
    function getChainId() external view returns (uint16);

    // @notice the interface to retry failed message on this Endpoint destination
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source chain contract address
    // @param _payload - the payload to be retried
    function retryPayload(uint16 _srcChainId, bytes calldata _srcAddress, bytes calldata _payload) external;

    // @notice query if any STORED payload (message blocking) at the endpoint.
    // @param _srcChainId - the source chain identifier
    // @param _srcAddress - the source chain contract address
    function hasStoredPayload(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool);

    // @notice query if the _libraryAddress is valid for sending msgs.
    // @param _userApplication - the user app address on this EVM chain
    function getSendLibraryAddress(address _userApplication) external view returns (address);

    // @notice query if the _libraryAddress is valid for receiving msgs.
    // @param _userApplication - the user app address on this EVM chain
    function getReceiveLibraryAddress(address _userApplication) external view returns (address);

    // @notice query if the non-reentrancy guard for send() is on
    // @return true if the guard is on. false otherwise
    function isSendingPayload() external view returns (bool);

    // @notice query if the non-reentrancy guard for receive() is on
    // @return true if the guard is on. false otherwise
    function isReceivingPayload() external view returns (bool);

    // @notice get the configuration of the LayerZero messaging library of the specified version
    // @param _version - messaging library version
    // @param _chainId - the chainId for the pending config change
    // @param _userApplication - the contract address of the user application
    // @param _configType - type of configuration. every messaging library has its own convention.
    function getConfig(uint16 _version, uint16 _chainId, address _userApplication, uint _configType) external view returns (bytes memory);

    // @notice get the send() LayerZero messaging library version
    // @param _userApplication - the contract address of the user application
    function getSendVersion(address _userApplication) external view returns (uint16);

    // @notice get the lzReceive() LayerZero messaging library version
    // @param _userApplication - the contract address of the user application
    function getReceiveVersion(address _userApplication) external view returns (uint16);
}

// File: contracts/lz-contracts/interfaces/ILayerZeroReceiver.sol



pragma solidity >=0.5.0;

interface ILayerZeroReceiver {
    // @notice LayerZero endpoint will invoke this function to deliver the message on the destination
    // @param _srcChainId - the source endpoint identifier
    // @param _srcAddress - the source sending contract address from the source chain
    // @param _nonce - the ordered message nonce
    // @param _payload - the signed payload is the UA bytes has encoded to be sent
    function lzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) external;
}

// File: @openzeppelin/contracts/utils/Context.sol


// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// File: @openzeppelin/contracts/access/Ownable.sol


// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;


/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// File: contracts/lz-contracts/lzApp/LzApp.sol



pragma solidity ^0.8.0;






/*
 * a generic LzReceiver implementation
 */
abstract contract LzApp is Ownable, ILayerZeroReceiver, ILayerZeroUserApplicationConfig {
    using BytesLib for bytes;

    // ua can not send payload larger than this by default, but it can be changed by the ua owner
    uint constant public DEFAULT_PAYLOAD_SIZE_LIMIT = 10000;

    ILayerZeroEndpoint public immutable lzEndpoint;
    mapping(uint16 => bytes) public trustedRemoteLookup;
    mapping(uint16 => mapping(uint16 => uint)) public minDstGasLookup;
    mapping(uint16 => uint) public payloadSizeLimitLookup;
    address public precrime;

    event SetPrecrime(address precrime);
    event SetTrustedRemote(uint16 _remoteChainId, bytes _path);
    event SetTrustedRemoteAddress(uint16 _remoteChainId, bytes _remoteAddress);
    event SetMinDstGas(uint16 _dstChainId, uint16 _type, uint _minDstGas);

    constructor(address _endpoint) {
        lzEndpoint = ILayerZeroEndpoint(_endpoint);
    }

    function lzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) public virtual override {
        // lzReceive must be called by the endpoint for security
        require(_msgSender() == address(lzEndpoint), "LzApp: invalid endpoint caller");

        bytes memory trustedRemote = trustedRemoteLookup[_srcChainId];
        // if will still block the message pathway from (srcChainId, srcAddress). should not receive message from untrusted remote.
        require(_srcAddress.length == trustedRemote.length && trustedRemote.length > 0 && keccak256(_srcAddress) == keccak256(trustedRemote), "LzApp: invalid source sending contract");

        _blockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
    }

    // abstract function - the default behaviour of LayerZero is blocking. See: NonblockingLzApp if you dont need to enforce ordered messaging
    function _blockingLzReceive(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload) internal virtual;

    function _lzSend(uint16 _dstChainId, bytes memory _payload, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams, uint _nativeFee) internal virtual {
        bytes memory trustedRemote = trustedRemoteLookup[_dstChainId];
        require(trustedRemote.length != 0, "LzApp: destination chain is not a trusted source");
        _checkPayloadSize(_dstChainId, _payload.length);
        lzEndpoint.send{value: _nativeFee}(_dstChainId, trustedRemote, _payload, _refundAddress, _zroPaymentAddress, _adapterParams);
    }

    function _checkGasLimit(uint16 _dstChainId, uint16 _type, bytes memory _adapterParams, uint _extraGas) internal view virtual {
        uint providedGasLimit = _getGasLimit(_adapterParams);
        uint minGasLimit = minDstGasLookup[_dstChainId][_type] + _extraGas;
        require(minGasLimit > 0, "LzApp: minGasLimit not set");
        require(providedGasLimit >= minGasLimit, "LzApp: gas limit is too low");
    }

    function _getGasLimit(bytes memory _adapterParams) internal pure virtual returns (uint gasLimit) {
        require(_adapterParams.length >= 34, "LzApp: invalid adapterParams");
        assembly {
            gasLimit := mload(add(_adapterParams, 34))
        }
    }

    function _checkPayloadSize(uint16 _dstChainId, uint _payloadSize) internal view virtual {
        uint payloadSizeLimit = payloadSizeLimitLookup[_dstChainId];
        if (payloadSizeLimit == 0) { // use default if not set
            payloadSizeLimit = DEFAULT_PAYLOAD_SIZE_LIMIT;
        }
        require(_payloadSize <= payloadSizeLimit, "LzApp: payload size is too large");
    }

    //---------------------------UserApplication config----------------------------------------
    function getConfig(uint16 _version, uint16 _chainId, address, uint _configType) external view returns (bytes memory) {
        return lzEndpoint.getConfig(_version, _chainId, address(this), _configType);
    }

    // generic config for LayerZero user Application
    function setConfig(uint16 _version, uint16 _chainId, uint _configType, bytes calldata _config) external override onlyOwner {
        lzEndpoint.setConfig(_version, _chainId, _configType, _config);
    }

    function setSendVersion(uint16 _version) external override onlyOwner {
        lzEndpoint.setSendVersion(_version);
    }

    function setReceiveVersion(uint16 _version) external override onlyOwner {
        lzEndpoint.setReceiveVersion(_version);
    }

    function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external override onlyOwner {
        lzEndpoint.forceResumeReceive(_srcChainId, _srcAddress);
    }

    // _path = abi.encodePacked(remoteAddress, localAddress)
    // this function set the trusted path for the cross-chain communication
    function setTrustedRemote(uint16 _remoteChainId, bytes calldata _path) external onlyOwner {
        trustedRemoteLookup[_remoteChainId] = _path;
        emit SetTrustedRemote(_remoteChainId, _path);
    }

    function setTrustedRemoteAddress(uint16 _remoteChainId, bytes calldata _remoteAddress) external onlyOwner {
        trustedRemoteLookup[_remoteChainId] = abi.encodePacked(_remoteAddress, address(this));
        emit SetTrustedRemoteAddress(_remoteChainId, _remoteAddress);
    }

    function getTrustedRemoteAddress(uint16 _remoteChainId) external view returns (bytes memory) {
        bytes memory path = trustedRemoteLookup[_remoteChainId];
        require(path.length != 0, "LzApp: no trusted path record");
        return path.slice(0, path.length - 20); // the last 20 bytes should be address(this)
    }

    function setPrecrime(address _precrime) external onlyOwner {
        precrime = _precrime;
        emit SetPrecrime(_precrime);
    }

    function setMinDstGas(uint16 _dstChainId, uint16 _packetType, uint _minGas) external onlyOwner {
        require(_minGas > 0, "LzApp: invalid minGas");
        minDstGasLookup[_dstChainId][_packetType] = _minGas;
        emit SetMinDstGas(_dstChainId, _packetType, _minGas);
    }

    // if the size is 0, it means default size limit
    function setPayloadSizeLimit(uint16 _dstChainId, uint _size) external onlyOwner {
        payloadSizeLimitLookup[_dstChainId] = _size;
    }

    //--------------------------- VIEW FUNCTION ----------------------------------------
    function isTrustedRemote(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool) {
        bytes memory trustedSource = trustedRemoteLookup[_srcChainId];
        return keccak256(trustedSource) == keccak256(_srcAddress);
    }
}

// File: contracts/lz-contracts/lzApp/NonblockingLzApp.sol



pragma solidity ^0.8.0;



/*
 * the default LayerZero messaging behaviour is blocking, i.e. any failed message will block the channel
 * this abstract class try-catch all fail messages and store locally for future retry. hence, non-blocking
 * NOTE: if the srcAddress is not configured properly, it will still block the message pathway from (srcChainId, srcAddress)
 */
abstract contract NonblockingLzApp is LzApp {
    using ExcessivelySafeCall for address;

    constructor(address _endpoint) LzApp(_endpoint) {}

    mapping(uint16 => mapping(bytes => mapping(uint64 => bytes32))) public failedMessages;

    event MessageFailed(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes _payload, bytes _reason);
    event RetryMessageSuccess(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes32 _payloadHash);

    // overriding the virtual function in LzReceiver
    function _blockingLzReceive(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload) internal virtual override {
        (bool success, bytes memory reason) = address(this).excessivelySafeCall(gasleft(), 150, abi.encodeWithSelector(this.nonblockingLzReceive.selector, _srcChainId, _srcAddress, _nonce, _payload));
        // try-catch all errors/exceptions
        if (!success) {
            _storeFailedMessage(_srcChainId, _srcAddress, _nonce, _payload, reason);
        }
    }

    function _storeFailedMessage(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload, bytes memory _reason) internal virtual {
        failedMessages[_srcChainId][_srcAddress][_nonce] = keccak256(_payload);
        emit MessageFailed(_srcChainId, _srcAddress, _nonce, _payload, _reason);
    }

    function nonblockingLzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) public virtual {
        // only internal transaction
        require(_msgSender() == address(this), "NonblockingLzApp: caller must be LzApp");
        _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
    }

    //@notice override this function
    function _nonblockingLzReceive(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload) internal virtual;

    function retryMessage(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) public payable virtual {
        // assert there is message to retry
        bytes32 payloadHash = failedMessages[_srcChainId][_srcAddress][_nonce];
        require(payloadHash != bytes32(0), "NonblockingLzApp: no stored message");
        require(keccak256(_payload) == payloadHash, "NonblockingLzApp: invalid payload");
        // clear the stored message
        failedMessages[_srcChainId][_srcAddress][_nonce] = bytes32(0);
        // execute the message. revert if it fails again
        _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload);
        emit RetryMessageSuccess(_srcChainId, _srcAddress, _nonce, payloadHash);
    }
}

// File: @openzeppelin/contracts/utils/introspection/IERC165.sol


// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// File: @openzeppelin/contracts/utils/introspection/ERC165.sol


// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;


/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// File: @openzeppelin/contracts/token/ERC721/IERC721.sol


// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;


/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// File: @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol


// OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.0;


/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

// File: @openzeppelin/contracts/token/ERC721/ERC721.sol


// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.0;








/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
contract ERC721 is Context, ERC165, IERC721, IERC721Metadata {
    using Address for address;
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    // Mapping from token ID to owner address
    mapping(uint256 => address) private _owners;

    // Mapping owner address to token count
    mapping(address => uint256) private _balances;

    // Mapping from token ID to approved address
    mapping(uint256 => address) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        require(owner != address(0), "ERC721: address zero is not a valid owner");
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        address owner = _ownerOf(tokenId);
        require(owner != address(0), "ERC721: invalid token ID");
        return owner;
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        _requireMinted(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual override {
        address owner = ERC721.ownerOf(tokenId);
        require(to != owner, "ERC721: approval to current owner");

        require(
            _msgSender() == owner || isApprovedForAll(owner, _msgSender()),
            "ERC721: approve caller is not token owner or approved for all"
        );

        _approve(to, tokenId);
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        _requireMinted(tokenId);

        return _tokenApprovals[tokenId];
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual override {
        //solhint-disable-next-line max-line-length
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");

        _transfer(from, to, tokenId);
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override {
        require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved");
        _safeTransfer(from, to, tokenId, data);
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer");
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted (`_mint`),
     * and stop existing when they are burned (`_burn`).
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return _ownerOf(tokenId) != address(0);
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `tokenId`.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) {
        address owner = ERC721.ownerOf(tokenId);
        return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender);
    }

    /**
     * @dev Safely mints `tokenId` and transfers it to `to`.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal virtual {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        require(
            _checkOnERC721Received(address(0), to, tokenId, data),
            "ERC721: transfer to non ERC721Receiver implementer"
        );
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal virtual {
        require(to != address(0), "ERC721: mint to the zero address");
        require(!_exists(tokenId), "ERC721: token already minted");

        _beforeTokenTransfer(address(0), to, tokenId, 1);

        // Check that tokenId was not minted by `_beforeTokenTransfer` hook
        require(!_exists(tokenId), "ERC721: token already minted");

        unchecked {
            // Will not overflow unless all 2**256 token ids are minted to the same owner.
            // Given that tokens are minted one by one, it is impossible in practice that
            // this ever happens. Might change if we allow batch minting.
            // The ERC fails to describe this case.
            _balances[to] += 1;
        }

        _owners[tokenId] = to;

        emit Transfer(address(0), to, tokenId);

        _afterTokenTransfer(address(0), to, tokenId, 1);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal virtual {
        address owner = ERC721.ownerOf(tokenId);

        _beforeTokenTransfer(owner, address(0), tokenId, 1);

        // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook
        owner = ERC721.ownerOf(tokenId);

        // Clear approvals
        delete _tokenApprovals[tokenId];

        unchecked {
            // Cannot overflow, as that would require more tokens to be burned/transferred
            // out than the owner initially received through minting and transferring in.
            _balances[owner] -= 1;
        }
        delete _owners[tokenId];

        emit Transfer(owner, address(0), tokenId);

        _afterTokenTransfer(owner, address(0), tokenId, 1);
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal virtual {
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");
        require(to != address(0), "ERC721: transfer to the zero address");

        _beforeTokenTransfer(from, to, tokenId, 1);

        // Check that tokenId was not transferred by `_beforeTokenTransfer` hook
        require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner");

        // Clear approvals from the previous owner
        delete _tokenApprovals[tokenId];

        unchecked {
            // `_balances[from]` cannot overflow for the same reason as described in `_burn`:
            // `from`'s balance is the number of token held, which is at least one before the current
            // transfer.
            // `_balances[to]` could overflow in the conditions described in `_mint`. That would require
            // all 2**256 token ids to be minted, which in practice is impossible.
            _balances[from] -= 1;
            _balances[to] += 1;
        }
        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        _afterTokenTransfer(from, to, tokenId, 1);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * Emits an {Approval} event.
     */
    function _approve(address to, uint256 tokenId) internal virtual {
        _tokenApprovals[tokenId] = to;
        emit Approval(ERC721.ownerOf(tokenId), to, tokenId);
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        require(owner != operator, "ERC721: approve to caller");
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` has not been minted yet.
     */
    function _requireMinted(uint256 tokenId) internal view virtual {
        require(_exists(tokenId), "ERC721: invalid token ID");
    }

    /**
     * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address.
     * The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param data bytes optional data to send along with the call
     * @return bool whether the call correctly returned the expected magic value
     */
    function _checkOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) private returns (bool) {
        if (to.isContract()) {
            try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                return retval == IERC721Receiver.onERC721Received.selector;
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert("ERC721: transfer to non ERC721Receiver implementer");
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        } else {
            return true;
        }
    }

    /**
     * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is
     * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`.
     * - When `from` is zero, the tokens will be minted for `to`.
     * - When `to` is zero, ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     * - `batchSize` is non-zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}

    /**
     * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is
     * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`.
     * - When `from` is zero, the tokens were minted for `to`.
     * - When `to` is zero, ``from``'s tokens were burned.
     * - `from` and `to` are never both zero.
     * - `batchSize` is non-zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {}

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant
     * being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such
     * that `ownerOf(tokenId)` is `a`.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __unsafe_increaseBalance(address account, uint256 amount) internal {
        _balances[account] += amount;
    }
}

// File: contracts/lz-contracts/token/onft/IONFT721Core.sol



pragma solidity >=0.5.0;


/**
 * @dev Interface of the ONFT Core standard
 */
interface IONFT721Core is IERC165 {
    /**
     * @dev Emitted when `_tokenIds[]` are moved from the `_sender` to (`_dstChainId`, `_toAddress`)
     * `_nonce` is the outbound nonce from
     */
    event SendToChain(uint16 indexed _dstChainId, address indexed _from, bytes indexed _toAddress, uint[] _tokenIds);
    event ReceiveFromChain(uint16 indexed _srcChainId, bytes indexed _srcAddress, address indexed _toAddress, uint[] _tokenIds);
    event SetMinGasToTransferAndStore(uint256 _minGasToTransferAndStore);
    event SetDstChainIdToTransferGas(uint16 _dstChainId, uint256 _dstChainIdToTransferGas);
    event SetDstChainIdToBatchLimit(uint16 _dstChainId, uint256 _dstChainIdToBatchLimit);

    /**
     * @dev Emitted when `_payload` was received from lz, but not enough gas to deliver all tokenIds
     */
    event CreditStored(bytes32 _hashedPayload, bytes _payload);
    /**
     * @dev Emitted when `_hashedPayload` has been completely delivered
     */
    event CreditCleared(bytes32 _hashedPayload);

    /**
     * @dev send token `_tokenId` to (`_dstChainId`, `_toAddress`) from `_from`
     * `_toAddress` can be any size depending on the `dstChainId`.
     * `_zroPaymentAddress` set to address(0x0) if not paying in ZRO (LayerZero Token)
     * `_adapterParams` is a flexible bytes array to indicate messaging adapter services
     */
    function sendFrom(address _from, uint16 _dstChainId, bytes calldata _toAddress, uint _tokenId, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable;
    /**
     * @dev send tokens `_tokenIds[]` to (`_dstChainId`, `_toAddress`) from `_from`
     * `_toAddress` can be any size depending on the `dstChainId`.
     * `_zroPaymentAddress` set to address(0x0) if not paying in ZRO (LayerZero Token)
     * `_adapterParams` is a flexible bytes array to indicate messaging adapter services
     */
    function sendBatchFrom(address _from, uint16 _dstChainId, bytes calldata _toAddress, uint[] calldata _tokenIds, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable;

    /**
     * @dev estimate send token `_tokenId` to (`_dstChainId`, `_toAddress`)
     * _dstChainId - L0 defined chain id to send tokens too
     * _toAddress - dynamic bytes array which contains the address to whom you are sending tokens to on the dstChain
     * _tokenId - token Id to transfer
     * _useZro - indicates to use zro to pay L0 fees
     * _adapterParams - flexible bytes array to indicate messaging adapter services in L0
     */
    function estimateSendFee(uint16 _dstChainId, bytes calldata _toAddress, uint _tokenId, bool _useZro, bytes calldata _adapterParams) external view returns (uint nativeFee, uint zroFee);
    /**
     * @dev estimate send token `_tokenId` to (`_dstChainId`, `_toAddress`)
     * _dstChainId - L0 defined chain id to send tokens too
     * _toAddress - dynamic bytes array which contains the address to whom you are sending tokens to on the dstChain
     * _tokenIds[] - token Ids to transfer
     * _useZro - indicates to use zro to pay L0 fees
     * _adapterParams - flexible bytes array to indicate messaging adapter services in L0
     */
    function estimateSendBatchFee(uint16 _dstChainId, bytes calldata _toAddress, uint[] calldata _tokenIds, bool _useZro, bytes calldata _adapterParams) external view returns (uint nativeFee, uint zroFee);
}

// File: contracts/lz-contracts/token/onft/ONFT721Core.sol



pragma solidity ^0.8.0;





abstract contract ONFT721Core is NonblockingLzApp, ERC165, ReentrancyGuard, IONFT721Core {
    uint16 public constant FUNCTION_TYPE_SEND = 1;

    struct StoredCredit {
        uint16 srcChainId;
        address toAddress;
        uint256 index; // which index of the tokenIds remain
        bool creditsRemain;
    }

    uint256 public minGasToTransferAndStore; // min amount of gas required to transfer, and also store the payload
    mapping(uint16 => uint256) public dstChainIdToBatchLimit;
    mapping(uint16 => uint256) public dstChainIdToTransferGas; // per transfer amount of gas required to mint/transfer on the dst
    mapping(bytes32 => StoredCredit) public storedCredits;

    constructor(uint256 _minGasToTransferAndStore, address _lzEndpoint) NonblockingLzApp(_lzEndpoint) {
        require(_minGasToTransferAndStore > 0, "minGasToTransferAndStore must be > 0");
        minGasToTransferAndStore = _minGasToTransferAndStore;
    }

    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return interfaceId == type(IONFT721Core).interfaceId || super.supportsInterface(interfaceId);
    }

    function estimateSendFee(uint16 _dstChainId, bytes memory _toAddress, uint _tokenId, bool _useZro, bytes memory _adapterParams) public view virtual override returns (uint nativeFee, uint zroFee) {
        return estimateSendBatchFee(_dstChainId, _toAddress, _toSingletonArray(_tokenId), _useZro, _adapterParams);
    }

    function estimateSendBatchFee(uint16 _dstChainId, bytes memory _toAddress, uint[] memory _tokenIds, bool _useZro, bytes memory _adapterParams) public view virtual override returns (uint nativeFee, uint zroFee) {
        bytes memory payload = abi.encode(_toAddress, _tokenIds);
        return lzEndpoint.estimateFees(_dstChainId, address(this), payload, _useZro, _adapterParams);
    }

    function sendFrom(address _from, uint16 _dstChainId, bytes memory _toAddress, uint _tokenId, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams) public payable virtual override {
        _send(_from, _dstChainId, _toAddress, _toSingletonArray(_tokenId), _refundAddress, _zroPaymentAddress, _adapterParams);
    }

    function sendBatchFrom(address _from, uint16 _dstChainId, bytes memory _toAddress, uint[] memory _tokenIds, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams) public payable virtual override {
        _send(_from, _dstChainId, _toAddress, _tokenIds, _refundAddress, _zroPaymentAddress, _adapterParams);
    }

    function _send(address _from, uint16 _dstChainId, bytes memory _toAddress, uint[] memory _tokenIds, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams) internal virtual {
        // allow 1 by default
        require(_tokenIds.length > 0, "tokenIds[] is empty");
        require(_tokenIds.length == 1 || _tokenIds.length <= dstChainIdToBatchLimit[_dstChainId], "batch size exceeds dst batch limit");

        for (uint i = 0; i < _tokenIds.length; i++) {
            _debitFrom(_from, _dstChainId, _toAddress, _tokenIds[i]);
        }

        bytes memory payload = abi.encode(_toAddress, _tokenIds);

        _checkGasLimit(_dstChainId, FUNCTION_TYPE_SEND, _adapterParams, dstChainIdToTransferGas[_dstChainId] * _tokenIds.length);
        _lzSend(_dstChainId, payload, _refundAddress, _zroPaymentAddress, _adapterParams, msg.value);
        emit SendToChain(_dstChainId, _from, _toAddress, _tokenIds);
    }

    function _nonblockingLzReceive(
        uint16 _srcChainId,
        bytes memory _srcAddress,
        uint64, /*_nonce*/
        bytes memory _payload
    ) internal virtual override {
        // decode and load the toAddress
        (bytes memory toAddressBytes, uint[] memory tokenIds) = abi.decode(_payload, (bytes, uint[]));

        address toAddress;
        assembly {
            toAddress := mload(add(toAddressBytes, 20))
        }

        uint nextIndex = _creditTill(_srcChainId, toAddress, 0, tokenIds);
        if (nextIndex < tokenIds.length) {
            // not enough gas to complete transfers, store to be cleared in another tx
            bytes32 hashedPayload = keccak256(_payload);
            storedCredits[hashedPayload] = StoredCredit(_srcChainId, toAddress, nextIndex, true);
            emit CreditStored(hashedPayload, _payload);
        }

        emit ReceiveFromChain(_srcChainId, _srcAddress, toAddress, tokenIds);
    }

    // Public function for anyone to clear and deliver the remaining batch sent tokenIds
    function clearCredits(bytes memory _payload) external virtual nonReentrant {
        bytes32 hashedPayload = keccak256(_payload);
        require(storedCredits[hashedPayload].creditsRemain, "no credits stored");

        (, uint[] memory tokenIds) = abi.decode(_payload, (bytes, uint[]));

        uint nextIndex = _creditTill(storedCredits[hashedPayload].srcChainId, storedCredits[hashedPayload].toAddress, storedCredits[hashedPayload].index, tokenIds);
        require(nextIndex > storedCredits[hashedPayload].index, "not enough gas to process credit transfer");

        if (nextIndex == tokenIds.length) {
            // cleared the credits, delete the element
            delete storedCredits[hashedPayload];
            emit CreditCleared(hashedPayload);
        } else {
            // store the next index to mint
            storedCredits[hashedPayload] = StoredCredit(storedCredits[hashedPayload].srcChainId, storedCredits[hashedPayload].toAddress, nextIndex, true);
        }
    }

    // When a srcChain has the ability to transfer more chainIds in a single tx than the dst can do.
    // Needs the ability to iterate and stop if the minGasToTransferAndStore is not met
    function _creditTill(uint16 _srcChainId, address _toAddress, uint _startIndex, uint[] memory _tokenIds) internal returns (uint256){
        uint i = _startIndex;
        while (i < _tokenIds.length) {
            // if not enough gas to process, store this index for next loop
            if (gasleft() < minGasToTransferAndStore) break;

            _creditTo(_srcChainId, _toAddress, _tokenIds[i]);
            i++;
        }

        // indicates the next index to send of tokenIds,
        // if i == tokenIds.length, we are finished
        return i;
    }

    function setMinGasToTransferAndStore(uint256 _minGasToTransferAndStore) external onlyOwner {
        require(_minGasToTransferAndStore > 0, "minGasToTransferAndStore must be > 0");
        minGasToTransferAndStore = _minGasToTransferAndStore;
        emit SetMinGasToTransferAndStore(_minGasToTransferAndStore);
    }

    // ensures enough gas in adapter params to handle batch transfer gas amounts on the dst
    function setDstChainIdToTransferGas(uint16 _dstChainId, uint256 _dstChainIdToTransferGas) external onlyOwner {
        require(_dstChainIdToTransferGas > 0, "dstChainIdToTransferGas must be > 0");
        dstChainIdToTransferGas[_dstChainId] = _dstChainIdToTransferGas;
        emit SetDstChainIdToTransferGas(_dstChainId, _dstChainIdToTransferGas);
    }

    // limit on src the amount of tokens to batch send
    function setDstChainIdToBatchLimit(uint16 _dstChainId, uint256 _dstChainIdToBatchLimit) external onlyOwner {
        require(_dstChainIdToBatchLimit > 0, "dstChainIdToBatchLimit must be > 0");
        dstChainIdToBatchLimit[_dstChainId] = _dstChainIdToBatchLimit;
        emit SetDstChainIdToBatchLimit(_dstChainId, _dstChainIdToBatchLimit);
    }

    function _debitFrom(address _from, uint16 _dstChainId, bytes memory _toAddress, uint _tokenId) internal virtual;

    function _creditTo(uint16 _srcChainId, address _toAddress, uint _tokenId) internal virtual;

    function _toSingletonArray(uint element) internal pure returns (uint[] memory) {
        uint[] memory array = new uint[](1);
        array[0] = element;
        return array;
    }
}

// File: contracts/lz-contracts/token/onft/IONFT721.sol



pragma solidity >=0.5.0;



/**
 * @dev Interface of the ONFT standard
 */
interface IONFT721 is IONFT721Core, IERC721 {

}

// File: contracts/lz-contracts/token/onft/ONFT721.sol



pragma solidity ^0.8.0;




// NOTE: this ONFT contract has no public minting logic.
// must implement your own minting logic in child classes
contract ONFT721 is ONFT721Core, ERC721, IONFT721 {
    constructor(string memory _name, string memory _symbol, uint256 _minGasToTransfer, address _lzEndpoint) ERC721(_name, _symbol) ONFT721Core(_minGasToTransfer, _lzEndpoint) {}

    function supportsInterface(bytes4 interfaceId) public view virtual override(ONFT721Core, ERC721, IERC165) returns (bool) {
        return interfaceId == type(IONFT721).interfaceId || super.supportsInterface(interfaceId);
    }

    function _debitFrom(address _from, uint16, bytes memory, uint _tokenId) internal virtual override {
        require(_isApprovedOrOwner(_msgSender(), _tokenId), "ONFT721: send caller is not owner nor approved");
        require(ERC721.ownerOf(_tokenId) == _from, "ONFT721: send from incorrect owner");
        _transfer(_from, address(this), _tokenId);
    }

    function _creditTo(uint16, address _toAddress, uint _tokenId) internal virtual override {
        require(!_exists(_tokenId) || (_exists(_tokenId) && ERC721.ownerOf(_tokenId) == address(this)));
        if (!_exists(_tokenId)) {
            _safeMint(_toAddress, _tokenId);
        } else {
            _transfer(address(this), _toAddress, _tokenId);
        }
    }
}

// File: contracts/lz-contracts/token/onft/extension/UniversalONFT721.sol



pragma solidity ^0.8.0;


/// @title Interface of the UniversalONFT standard
contract UniversalONFT721 is ONFT721 {
    uint public nextMintId;
    uint public maxMintId;

    /// @notice Constructor for the UniversalONFT
    /// @param _name the name of the token
    /// @param _symbol the token symbol
    /// @param _layerZeroEndpoint handles message transmission across chains
    /// @param _startMintId the starting mint number on this chain
    /// @param _endMintId the max number of mints on this chain
    constructor(string memory _name, string memory _symbol, uint256 _minGasToTransfer, address _layerZeroEndpoint, uint _startMintId, uint _endMintId) ONFT721(_name, _symbol, _minGasToTransfer, _layerZeroEndpoint) {
        nextMintId = _startMintId;
        maxMintId = _endMintId;
    }

    /// @notice Mint your ONFT
    function mint() external payable {
        require(nextMintId <= maxMintId, "UniversalONFT721: max mint limit reached");

        uint newId = nextMintId;
        nextMintId++;

        _safeMint(msg.sender, newId);
    }
}

// File: contracts/lz-contracts/examples/ExampleUniversalONFT721.sol



pragma solidity ^0.8.0;

//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Q&Rdq6qKDWQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@QRXt<~'`          ._^cag@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@k*,                         `!jQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@U;                                 ,}Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@g;                                     'w@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@i                                         ~Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@L                  '*Ij}i~                  :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@k                  7@@@@@@@D                  =@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@!                  k@@@@@@@@                  `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@;                  k@@@@@@@@                  `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@;                  k@@@@@@@@                  `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@t^^^^^^^^^^^^;~'`  k@@@@@@@@                  `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@QUz+:'`    k@@@@@@@@                  '@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@K?'           k@@@@@@@@                  X@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@b;              k@@@@@@@@                 f@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Q;                k@@@@@@@@               =Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Q'                 k@@@@@@@@           `;5Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@7                  k@@@@@@@@       ,~|ZQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@;                  k@@@@@@@@  `',;><<<<<<<<<<<?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@;                  k@@@@@@@@                  `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@;                  k@@@@@@@@                  `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@!                  k@@@@@@@@                  `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@f                  y@@@@@@@Q                  ~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@;                  +obDdhL`                 `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?                                         :Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@a'                                     `L@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@k;                                 ,YQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@QP>'                         `;}Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Rj7^,`             `';iZWQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Q#RdqAAKDWQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@


/// @title A LayerZero UniversalONFT example
/// @notice You can use this to mint ONFT and send nftIds across chain.
///  Each contract deployed to a chain should carefully set a `_startMintIndex` and a `_maxMint`
///  value to set a range of allowed mintable nftIds (so that no two chains can mint the same id!)
contract LayerZeroNFT is UniversalONFT721 {
    string public baseTokenURI;
    constructor(
        string memory _baseTokenURI,
        uint256 _minGasToStore, 
        address _layerZeroEndpoint, 
        uint _startMintId, 
        uint _endMintId
        ) UniversalONFT721("Layer Zero NFT", "LZNFT", 
        _minGasToStore, 
        _layerZeroEndpoint, 
        _startMintId, 
        _endMintId) {
            setBaseURI(_baseTokenURI);
        }

        /// @notice Set the baseTokenURI
    /// @param _baseTokenURI to set
    function setBaseURI(string memory _baseTokenURI) public onlyOwner {
        baseTokenURI = _baseTokenURI;
    }

    /// @notice Get the base URI
    function _baseURI() internal view override returns (string memory) {
        return baseTokenURI;
    }

    function tokenURI(uint256 _nftId)
        public
        view
        override(ERC721)
        returns (string memory)
    {
        require(_exists(_nftId), "Not exist");

        string memory currentBaseURI = _baseURI();
        return currentBaseURI;
    }
}

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ Π² Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ Ρ€Π°Π·Π΄Π΅Π» слСва, раскрываСм Advanced Configurations, Π·Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³Π°Π»ΠΎΡ‡ΠΊΡƒ Enable optimization.

ПослС этого Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Compile LayerZeroNFT.sol, ошибок Π±Ρ‹Ρ‚ΡŒ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ.

По ТСланию Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ измСнь Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΈ символ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ. Для этого ΠΏΡ€ΠΎΡΠΊΠΎΠ»ΡŒΡ‚Π΅ Ρ„Π°ΠΉΠ» с ΠΊΠΎΠ΄ΠΎΠΌ Π²Π½ΠΈΠ· Π΄ΠΎ этой части ΠΊΠΎΠ΄Π°. ΠœΠΎΠΆΠ΅Ρ‚Π΅ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ свои значСния вмСсто ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ…ΡΡ.

"Layer Zero NFT" - Π½Π°Π·Π²Π°Π½ΠΈΠ΅ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ
"LZNFT" - символ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ

Π—Π°Ρ‚Π΅ΠΌ сново Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Compile LayerZeroNFT.sol.

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ Π² Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚Ρ‹ΠΉ Ρ€Π°Π·Π΄Π΅Π» слСва, Π² спискС ENVIRONMENT Π²Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ Injected Provider -> ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ Metamask Π² сСти BNB.

Π’ спискС CONTRACT Π²Ρ‹Π±ΠΈΡ€Π°Π΅ΠΌ LayerZeroNFT.

Π Π°Π·Π²ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°Π΅ΠΌ Π²ΠΊΠ»Π°Π΄ΠΊΡƒ Deploy ΠΈ вставляСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ значСния. Но Π½ΡƒΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ QmZLaTwZU8KpkBLJMe5WwQKPv2zKv4FYUvYpcNgxW49wa2 Π½Π° CID json Ρ„Π°ΠΉΠ»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΡ‹ Π·Π°Π³Ρ€ΡƒΠ·ΠΈΠ»ΠΈ Ρ€Π°Π½Π΅Π΅ Π½Π° Pinata.

_BASETOKENURI: ipfs://QmZLaTwZU8KpkBLJMe5WwQKPv2zKv4FYUvYpcNgxW49wa2
_MINGASTOSTORE: 35000
_LAYERZEROENDPOINT: 0x3c2269811836af69497E5F486A85D7316753cf62
_STARTMINTID: 1
_ENDMINTID: 500

НаТимаСм transact, подписываСм Π² кошСлькС.

Π’ кошСлькС ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ ΠΏΠ»Π°Ρ‚Ρƒ Π·Π° Π³Π°Π· с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ½ΠΎΠΏΠΊΠΈ Edit.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ мСняСм ΡΠ΅Ρ‚ΡŒ Π² кошСлькС Π½Π° Arbitrum Nova ΠΈ Π΅Ρ‰Π΅ Ρ€Π°Π· Π΄Π΅ΠΏΠ»ΠΎΠΈΠΌ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚, Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹. _MINGASTOSTORE ΠΈ _BASETOKENURI оставляСм Ρ‚Π°ΠΊΠΈΠΌΠΈ ΠΆΠ΅, ΠΊΠ°ΠΊΠΎΠΉ использовали Π² сСти BNB, ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ значСния мСняСм Π½Π° ΡΠ»ΡƒΠ΄ΡƒΡŽΡ‰ΠΈΠ΅, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡƒ transact.

_BASETOKENURI: ipfs://QmZLaTwZU8KpkBLJMe5WwQKPv2zKv4FYUvYpcNgxW49wa2
_MINGASTOSTORE: 35000
_LAYERZEROENDPOINT: 0x4EE2F9B7cf3A68966c370F3eb2C16613d3235245
_STARTMINTID: 501
_ENDMINTID: 1000

ΠŸΠ΅Ρ€Π΅Π΄ подписаниСм Π² кошСлькС Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π½Π° Site suggested, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ†Π΅Π½Ρƒ Π³Π°Π·Π°.

Π‘Ρ‚Π°Π²ΠΈΠΌ ΠΏΠΎ ΠΌΠ°Ρ€ΠΊΠ΅Ρ‚Ρƒ.

ДобавляСм ΠΊΠΎΠ΄ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° Π² Π±Π»ΠΎΠΊΡ‡Π΅ΠΉΠ½ эксплорСры BNB Chain ΠΈ Arbitrum Nova

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ Π² BscScan, вставляСм адрСс своСго кошСлька, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΡ‹ Π΄Π΅ΠΏΠ»ΠΎΠΈΠ»ΠΈ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Ρ‹. КликаСм Π½Π° послСднюю Ρ‚Ρ€Π°Π½Π·Π°ΠΊΠΈΡŽ Contract Creation.

КликаСм Π½Π° адрСс ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π°.

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ Π²ΠΎ Π²ΠΊΠ»Π°Π΄ΠΊΡƒ Contract, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Verify and Publish.

Π£ΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, ΠΊΠ»Π°ΠΊΠ°Π΅ΠΌ Continue. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, ваша вСрсия ΠΊΠΎΠΌΠΏΠΈΠ»Π΅Ρ€Π° Π² Remix отличСтся ΠΎΡ‚ ΠΌΠΎΠ΅ΠΉ (Ρƒ мСня v0.8.18), Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π΅Ρ€ΡΠΈΡŽ ΠΊΠΎΠΌΠΏΠΈΠ»Π΅Ρ€Π° Π² Remix Π² Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ Π²ΠΊΠ»Π°Π΄ΠΊΠ΅.

ВставляСм ΠΊΠΎΠ΄ нашСго ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π°, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠΎΠΏΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ прямо ΠΈΠ· Remix. Optimization ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ Π½Π° Yes. Π‘ΠΎΠ»ΡŒΡˆΠ΅ Π½ΠΈΡ‡Π΅Π³ΠΎ Π½Π΅ мСняСм, ΠΊΠ»ΠΈΠΊΠ°Π΅ΠΌ Verify and Publish.

Если Ρƒ вас появилась такая страница, Π·Π°Π½Ρ‡ΠΈΡ‚ Π²Ρ‹ всС сдСлали ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ. НаТимаСм Π½Π° адрСс ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° - Ρ‚ΠΎΡ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… скобках.

ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ Π²ΠΎ Π²ΠΊΠ»Π°Π΄ΠΊΡƒ Write Contract, ΠΊΠΎΠ½Π½Π΅ΠΊΡ‚ΠΈΠΌ кошСлСк.

Π’ Ρ€Π°Π·Π΄Π΅Π»Π΅ setTrustedRemoteAddress ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹:

  • _remoteChainId - 175;
  • _remoteAddress - адрСс ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° нашСй NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π² сСти Arbitrum Nova, Π²Ρ‹ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ с Ρ‚Π΅ΠΌ, ΠΊΠ°ΠΊ ΠΌΡ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»ΠΈ адрСс ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° Π² BscScan, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ сайт Nova.ArbiScan.

КликаСм Write ΠΈ подписываСм Π² кошСлькС.

ПоднимаСмся Π²Ρ‹ΡˆΠ΅ Π² Ρ€Π°Π·Π΄Π΅Π» mint, вписываСм 0 (сумма, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ Π·Π°ΠΏΠ»Π°Ρ‚ΠΈΡ‚ΡŒ Π·Π° ΠΌΠΈΠ½Ρ‚ 1 NFT), Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Write.

Π£Ρ€Π°! ΠœΡ‹ сминтили 1 NFT Π² сСти BNB Chain. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ΄Π΅Π»Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ ΠΆΠ΅ манипуляции Π² сСти Arbitrum Nova, Π½ΠΎ с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ.

Π’Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅ΠΌ смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π² Arbitrum Nova Π½Π° Nova.ArbiScan. Π”Π΅Π»Π°Π΅ΠΌ всС Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ Π΄Π΅Π»Π°Π»ΠΈ Π² BscScan. Π—Π°Ρ‚Π΅ΠΌ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Π·Π²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ setTrustedRemoteAddress Π² смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π΅ Π² сСти Arbitrum Nova.

Π£ΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹:

  • _remoteChainId - 102;
  • _remoteAddress - адрСс ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π° нашСй NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ Π² сСти BNB.

ΠŸΠ΅Ρ€Π΅Π΄ подписаниС Π² кошСлькС Π½Π΅ Ρ‰Π°Π±ΡƒΠ΄ΡŒΡ‚Π΅ Π½Π°ΠΆΠ°Ρ‚ΡŒ Π½Π° Site suggested ΠΈ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Market, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ ΠΏΠ»Π°Ρ‚Ρƒ Π·Π° Π³Π°Π·. Π’ сСти Arbitrum Nova Π»ΡƒΡ‡ΡˆΠ΅ Ρ‚Π°ΠΊ ΠΏΡ€ΠΎΠ΄Π΅Π»Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΠ΅Ρ€Π΅Π΄ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ подписаниСм Ρ‚Ρ€Π°Π½Π·Π°ΠΊΡ†ΠΈΠΈ.

Π˜Π΅ΠΏΠ΅Ρ€ΡŒ, Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² сСти BNB, ΠΌΠΈΠ½Ρ‚ΠΈΠΌ NFT с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ mint.

ΠžΡ‚ΠΏΡ€Π°Π²Π»ΡΠ΅ΠΌ NFT ΠΈΠ· сСти Arbitrum Nova Π² ΡΠ΅Ρ‚ΡŒ BNB

ΠŸΠ΅Ρ€Π΅Π΄ ΠΎΡ‚ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ нашСй NFT ΠΈΠ· сСти Arbitrum Nova Π² ΡΠ΅Ρ‚ΡŒ BNB Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€ Π³Π°Π·Π° для Ρ‚Ρ€Π°Π½Π·Π°ΠΊΡ†ΠΈΠΈ. Для этого Π½Π° Ρ‚ΠΎΠΉ ΠΆΠ΅ страницС нашСго смарт ΠΊΠΎΠ½Ρ‚Ρ€Π°ΠΊΡ‚Π°, Π³Π΄Π΅ ΠΌΡ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‡Ρ‚ΠΎ сминтили NFT, Π² Nova.ArbiScan Π² Ρ€Π°Π·Π΄Π΅Π»Π΅ Write Contract Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ setMinDstGas. ВписываСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ значСния.

_dstChainId: 102
_packetType: 1
_minGas: 200000

Для Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ³ΠΎ понимания я Ρ€Π°ΡΠΏΠΈΡˆΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ этих ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²:

  • _dstChainId - ID Π±Π»ΠΎΠΊΡ‡Π΅ΠΉΠ½Π°, 102 - это ΡΠ΅Ρ‚ΡŒ BNB Chain, ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π’Π£Π’;
  • _packetType - Ρ‚ΠΈΠΏ Ρ‚Ρ€Π°Π½Π·Π°ΠΊΡ†ΠΈΠΈ, Π² нашСм случаС 1 ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΎΡ‚ΠΏΡ€Π°Π²ΠΊΡƒ;
  • _minGas - ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€ Π³Π°Π·Π° для Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Ρ‚Ρ€Π°Π½Π·Π°ΠΊΡ†ΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΌ Π±Π»ΠΎΠΊΡ‡Π΅ΠΉΠ½Π΅.

НаТимаСм Write, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ самоС Π³Π»Π°Π²Π½ΠΎΠ΅ - отправляСм NFT ΠΈΠ· сСти Arbitrum Nova Π² ΡΠ΅Ρ‚ΡŒ BNB. Для этого Π½Π°ΠΌ Π½ΡƒΠΆΠ½Π° функция sendFrom. ВписываСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ значСния:

sendFrom: 0.0006
_from: ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ свой адрСс ΠΈΠ· ΠœΠ΅Ρ‚Π°ΠΌΠ°ΡΠΊΠ°
_dstChainId: 102
_toAddress: свой адрСс ΠΈΠ· мСтамаска
_tokenId: 501
_refundAddress: свой адрСс ΠΈΠ· ΠœΠ΅Ρ‚Π°ΠΌΠ°ΡΠΊΠ°
_zroPaymentAddress: 0x0000000000000000000000000000000000000000
_adapterParams: 0x00010000000000000000000000000000000000000000000000000000000000030d40

Π§Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ эти ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹:

  • sendFrom - Ρ€Π°Π·ΠΌΠ΅Ρ€ ETH, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ Π²ΠΎ врСмя подписания Ρ‚Ρ€Π°Π½Π·Π°ΠΊΡ†ΠΈΠΈ, Π½ΡƒΠΆΠ½ΠΎ ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ достаточно срСдств, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Ρ…Π²Π°Ρ‚ΠΈΠ»ΠΎ Π½Π° ΠΎΠΏΠ»Π°Ρ‚Ρƒ Π³Π°Π·Π° Π² сСти, ΠΊΡƒΠ΄Π° ΠΏΡ€ΠΈΠ΄Π΅Ρ‚ NFT. ΠŸΡ€ΠΈ нашСм Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΌ минимальном Ρ€Π°Π·ΠΌΠ΅Ρ€Π΅ Π³Π°Π·Π° Π² 200000 срСдств Π² Ρ€Π°Π·ΠΌΠ΅Ρ€Π΅ 0.0006 ETH Π΄ΠΎΠ»ΠΆΠ½ΠΎ Ρ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ.
  • _from - адрСс, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ отправляСт NFT, Π² Π΄Π°Π½Π½ΠΎΠΌ случаС это ΠΌΡ‹, Π½ΠΎ Ссли Π±Ρ‹ Π½Π°ΠΌ ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ Π΄Π΅ΠΏΠΆΠ°Ρ‚Π΅Π»ΡŒ Π΄Π°Π» ΠΏΡ€Π°Π²ΠΎ ΠΎΡ‚ΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ ΠΊΠ°ΠΊΡƒΡŽ-Π»ΠΈΠ±ΠΎ ΠΈΠ· своих NFT ΠΈΠ· этой ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΠΈ, ΠΌΡ‹ ΠΌΠΎΠ³Π»ΠΈ Π±Ρ‹ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ адрСс этого Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°;
  • _dstChainId - ID Ρ†Π΅ΠΏΠΎΡ‡ΠΊΠΈ назначСния;
  • _toAddress - адрСс, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΡ‹ отправляСм NFT;
  • _tokenId - ID нашСй NFT, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ, Ρƒ нас ΠΏΠΎ сути Π΅ΡΡ‚ΡŒ ΠΎΠ΄Π½Π° коллСкция Π² Π΄Π²ΡƒΡ… Π±Π»ΠΎΠΊΡ‡Π΅ΠΉΠ½Π°Ρ… с ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ количСство 1000, Π² сСти BNB ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠΈΠ½Ρ‚ΠΈΡ‚ΡŒ Π½ΠΎΠΌΠ΅Ρ€Π° 1-500, Π² сСти Arbitrum Nova ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠΈΠ½Ρ‚ΠΈΡ‚ΡŒ Π½ΠΎΠΌΠ΅Ρ€Π° 500-1000;
  • _refundAddress - адрСс, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½ΡƒΠΆΠ½ΠΎ ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ Π½Π΅ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ срСдства;
  • _zroPaymentAddress - этот адрСс Π½Π°ΠΌ Π½ΡƒΠΆΠ΅Π½ Π±Ρ‹Π» Π±Ρ‹, Ссли Π±Ρ‹ ΠΌΡ‹ ΠΏΠ»Π°Ρ‚ΠΈΠ»ΠΈ Π² ΠΌΠΎΠ½Π΅Ρ‚Π°Ρ… ZRO (ΠΌΠΎΠ½Π΅Ρ‚Ρ‹ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° LayerZero), Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Ρ‡ΠΈΠΊΠΈ LayerZero ΡƒΠΆΠ΅ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎ Π²ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ для Π±ΡƒΠ΄ΡƒΡ‰Π΅Π³ΠΎ Ρ‚ΠΎΠΊΠ΅Π½Π°;
  • _adapterParams - ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉΡ… ΡƒΠΊΠ°Π·Π°Π½Π° вСрсия ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€ ΠΏΠ»Π°Ρ‚Ρ‹ Π·Π° Π³Π°Π·
    0x00010000000000000000000000000000000000000000000000000000000000030d40 ->
    0001 - это вСрсия 1
    30d40 - это 200,000 Π² ΡˆΠ΅ΡΠ½Π°Π΄Ρ†Π°Ρ‚Π΅Ρ€ΠΈΡ‡Π½ΠΎΠΌ Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅.

НаТимаСм Write ΠΈ подписываСм Π² кошСлькС.

ΠœΡ‹ ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΠ»ΠΈ Π½Π°ΡˆΡƒ NFT ΠΈΠ· сСти Arbitrum Nova Π² ΡΠ΅Ρ‚ΡŒ BNB Chain с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° LayerZero! ΠžΡ‚ΡΠ»Π΅ΠΆΠΈΠ²Π°Ρ‚ΡŒ статус Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°Π½Π·Π°ΠΊΡ†ΠΈΠΈ Π² ΠΏΡ€ΠΎΠΊΠΎΠ»Π΅ LayerZero ΠΌΠΎΠΆΠ½ΠΎ Π² LayerZero Scan. Достаточно Π²ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² поиск Ρ…ΡΡˆ Ρ‚Ρ€Π°Π½Π·Π°ΠΊΡ†ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΡ‹ отправляСм NFT. Когда появится статус DELIVERED, это Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ наша NFT Π΄ΠΎΠ±Ρ€Π°Π»Π°ΡΡŒ Π΄ΠΎ ΠΏΡƒΠ½ΠΊΡ‚Π° назначСния.

На этом Ρƒ мСня всС! Если Π²Ρ‹ ΡΠΏΡ€Π°Π²ΠΈΠ»ΠΈΡΡŒ с Π΄Π°Π½Π½Ρ‹ΠΌ Π³Π°ΠΉΠ΄ΠΎΠΌ, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ вас ΠΏΠΎΠ·Π΄Ρ€Π°Π²ΠΈΡ‚ΡŒ. Π­Ρ‚ΠΎ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ дСйствия, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ смогут Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ваши кошСльки ΠΈΠ· ΠΎΠ±Ρ‰Π΅ΠΉ массы Π² LayerZero ΠΈ Π² Arbitrum Nova.

πŸ˜ŠΠ•ΡΠ»ΠΈ Π²Π°ΠΌ понравился Π³Π°ΠΉΠ΄ ΠΈ Π²Ρ‹ Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ мСня ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ, ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΡ‚ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ Π΄ΠΎΠ½Π°Ρ‚ Π½Π° ΠΌΠΎΠΉ кошСлСк:

0xaA039Fd15cd82E743aF7A14019a824Af00D3F691

ΠœΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΡ‚ΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ Π»ΡŽΠ±Ρ‹Π΅ ΠΌΠΎΠ½Π΅Ρ‚Ρ‹ ΠΈ Ρ‚ΠΎΠΊΠ΅Π½Ρ‹ Π² сСтях Ethereum, BNB Chain, Polygon, Arbitrum, Arbitrum Nova, Avalanche ΠΈ Ρ‚.Π΄..

Π’Π°ΠΊΠΆΠ΅ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ мСня Π΄ΠΎΠ½Π°Ρ‚ΠΎΠΌ здСсь Π½Π° Teletype.

ВсСм Π΄ΠΎΠ½Π°Ρ‚Π΅Ρ€Π°ΠΌ Π±ΡƒΠ΄Ρƒ ΠΊΡ€Π°ΠΉΠ½Π΅ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚Π΅Π»Π΅Π½!

Π‘Ρ‚Π°Π²ΡŒΡ‚Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΈ ΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚Π΅ΡΡŒ Ρ‡Π°ΡΡ‚ΡŒΡŽ ΠΊΠΎΠΌΠ°Π½Π΄Ρ‹ Cryptonik πŸ‘‡

πŸ“’Π’Π΅Π»Π΅Π³Ρ€Π°ΠΌ ΠΊΠ°Π½Π°Π» https://t.me/cryptonik_space 🎬 Youtube ΠΊΠ°Π½Π°Π» https://www.youtube.com/@cryptonik_space πŸ’¬ Π’Π΅Π»Π΅Π³Ρ€Π°ΠΌ Ρ‡Π°Ρ‚ https://t.me/cryptonik_space_chat