LLM. ReAct: Synergizing reasining and acting in language models
🤖 ReAct: Synergizing reasining and acting in language models
🤘 one-liner: LLM можно использовать не только для создания цепочки рассуждений, но и для определения последовательности действий. Эти действия позволяют ей взаимодействовать с внешним миром и собирать дополнительную информацию из разных сторонних источников 📚🔍
♿️ Ограничения Chain-of-Thought CoT можно сравнить с черным ящиком, так как модель основывается на своих внутренних данных для создания рассуждений и не принимает в расчет информацию из вне. Это делает такой подход менее гибким и приводит к таким проблемам как галюцинации и накоплении ошибки в процессе рассуждений.
💡 Идея ReAct - парадигма, который объединяет `reasoning` и `action` с помощью языковой модели для решения различных задач. ReAct заставляет LLM, одновременно создавать рассуждения и действия для выполнения задачи, таким образом помогает модели динамически размышлять, планировать и корректировать свои действия. Важным фактом ReAct парадигмы является тот факт, что модель может взаимодействовать с внешними источниками
💫 Положительные стороны ReAct:
1️⃣ Интуитивность и простота создания: для ReAct промпта достаточно описать мысли, соответствующие действиям.
2️⃣ Универсальность и гибкость: ReAct подходит для множества задач, требующих разных действий и анализа.
3️⃣ Эффективность и надежность: ReAct хорошо обобщает информацию на новые примеры задач, обучаясь лишь на 1-6 in-context примерах.
4️⃣ Прозрачность и контролируемость: ReAct делает процесс принятия решений понятным и позволяет легко проверять правильность рассуждений. К тому же, вы можете настроить или исправить действия модели в реальном времени, редактируя её рассуждения.
⚔️ In-context learning VS Finetuning
Сравниваются два подхода: prompt и finetune для четырех методов: Standard, CoT, Act, ReAct на датасете HotpotQA. С использованием PaLM-8/62B метод ReAct показывает худший результат среди четырех методов из-за сложности одновременного обучения рассуждениям и действиям, опираясь на in-context примеры
Однако, после дообучения на всего 3000 примерах, ReAct становится лучшим методом среди четырех. При этом PaLM-8B с дообученным ReAct превосходит все prompt методы PaLM-62B, а PaLM-62B с дообученным ReAct превосходит все prompt методы 540B
🥇 Суперпромпт
Промпт позволяющий агенту выбирать между ReAct и CoT+Self-Consistency показывает лучшие результаты на датасетах HotpotQA и Fever
👨💻 Code
Сделаем простую среду, к которой будет обращаться агент
import gymnasium
from langchain import Wikipedia
from langchain.agents.react.base import DocstoreExplorer
from environment.utils import (
parse_action,
compare_answer
)
class QuestionAnsweringEnvironment(gymnasium.Env):
def __init__(
self,
question: str,
key: str,
max_steps: int = 6,
explorer: DocstoreExplorer = None
):
self.question = question
self.key = key
self.max_steps = max_steps
self.explorer = explorer
if self.explorer is None:
self.explorer = DocstoreExplorer(Wikipedia())
self.reset()
def reset(self):
self.curr_step = 0
self.terminated = False
self.answer = ""
def step(self, action: str) -> Tuple[str, bool, bool, bool, bool]:
action_type, argument = parse_action(action)
if action_type == "Finish":
self.answer = argument
if self.is_correct():
observation = "Answer is CORRECT"
else:
observation = "Answer is INCORRECT"
self.terminated = True
elif action_type == "Search":
try:
observation = self.explorer.search(argument).strip("\n").strip()
except Exception as e:
print(e)
observation = "Could not find that page, please try again."
elif action_type == "Lookup":
try:
observation = self.explorer.lookup(argument).strip("\n").strip()
except ValueError:
observation = "The last page Searched was not found, so you cannot Lookup a keyword in it. Please try one of the similar pages given."
else:
observation = "Invalid Action. Valid Actions are Lookup[<topic>] Search[<topic>] and Finish[<answer>]."
reward = self.is_correct()
terminated = self.is_terminated()
truncated = self.is_truncated()
self.curr_step += 1
return observation, reward, terminated, truncated, self.curr_step
def is_correct(self) -> bool:
return compare_answer(self.answer, self.key)
def is_terminated(self) -> bool:
return self.terminated
def is_truncated(self) -> bool:
return self.curr_step >= self.max_steps
Дополнительные функции для парсинга текстового запроса из environment.utils
import string
import re
def parse_action(s: str):
pattern = r"^(\w+)\[(.+)\]quot;
match = re.match(pattern, s)
if match:
action_type = match.group(1)
argument = match.group(2)
return action_type, argument
else:
return None, None
def normalize_answer(s: str):
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def compare_answer(answer: str, key: str) -> bool:
return normalize_answer(answer) == normalize_answer(key)
Теперь напишем агента который будет принимать QuestionAnsweringEnvironment
import os
import tiktoken
import gymnasium
from typing import Optional
from langchain import OpenAI
from langchain.prompts import PromptTemplate
def format_step(step: str) -> str:
return step.strip('\n').strip().replace('\n', '')
class ReactAgent:
def __init__(
self,
env: gymnasium.Env,
react_instraction_template: str,
react_example: str,
react_llm: Optional[OpenAI] = None
) -> None:
self.question = env.question
self.agent_prompt = PromptTemplate(
input_variables=["examples", "question", "scratchpad"],
template=react_instraction_template,
)
self.react_examples = react_example
self.env = env
self.env.reset()
self.reset()
self.truncated, self.reward, self.terminated = False, False, False
self.llm = react_llm
if self.llm is None:
self.llm = OpenAI(
temperature=0,
max_tokens=100,
model_name="text-davinci-003",
model_kwargs={"stop": "\n"},
openai_api_key=os.environ["OPENAI_API_KEY"]
)
self.enc = tiktoken.encoding_for_model("text-davinci-003")
def run(self, reset: bool = True) -> None:
if reset:
self.env.reset()
self.reset()
while not (self.is_truncated() or self.is_terminated()):
self.step()
return self.env.answer
def step(self) -> None:
# Think
self.scratchpad += f"\nThought {self.curr_step}:"
self.scratchpad += " " + self.prompt_agent()
print(self.scratchpad.split("\n")[-1])
# Act
self.scratchpad += f"\nAction {self.curr_step}:"
action = self.prompt_agent()
self.scratchpad += " " + action
print(self.scratchpad.split("\n")[-1])
# Observe
self.scratchpad += f"\nObservation {self.curr_step}: "
observation, self.reward, self.terminated, self.truncated, self.curr_step = self.env.step(action)
self.scratchpad += observation
print(self.scratchpad.split("\n")[-1])
def prompt_agent(self) -> str:
return format_step(self.llm(self._build_agent_prompt()))
def _build_agent_prompt(self) -> str:
return self.agent_prompt.format(
examples=self.react_examples,
question=self.question,
scratchpad=self.scratchpad
)
def is_terminated(self) -> bool:
return self.env.is_terminated()
def is_correct(self) -> bool:
return self.env.is_correct()
def is_truncated(self) -> bool:
return (
self.env.is_truncated() or
len(self.enc.encode(self._build_agent_prompt())) > 3896
)
def reset(self) -> None:
self.scratchpad = ""
self.curr_step = 1В качестве in-context примеров будет использовать следующий набор
Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into? Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado orogeny extends into, then find the elevation range of the area. Action 1: Search[Colorado orogeny] Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado and surrounding areas. Thought 2: It does not mention the eastern sector. So I need to look up eastern sector. Action 2: Lookup[eastern sector] Observation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central Plains orogeny. Thought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I need to search High Plains and find its elevation range. Action 3: Search[High Plains] Observation 3: High Plains refers to one of two distinct land regions: Thought 4: I need to instead search High Plains (United States). Action 4: Search[High Plains (United States)] Observation 4: The High Plains are a subregion of the Great Plains. From east to west, the High Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130 m).[3] Thought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, so the answer is 1,800 to 7,000 ft. Action 5: Finish[1,800 to 7,000 ft] Question: Musician and satirist Allie Goertz wrote a song about the "The Simpsons" character Milhouse, who Matt Groening named after who? Thought 1: The question simplifies to "The Simpsons" character Milhouse is named after who. I only need to search Milhouse and find who it is named after. Action 1: Search[Milhouse] Observation 1: Milhouse Mussolini Van Houten is a recurring character in the Fox animated television series The Simpsons voiced by Pamela Hayden and created by Matt Groening. Thought 2: The paragraph does not tell who Milhouse is named after, maybe I can look up "named after". Action 2: Lookup[named after] Observation 2: (Result 1 / 1) Milhouse was named after U.S. president Richard Nixon, whose middle name was Milhous. Thought 3: Milhouse was named after U.S. president Richard Nixon, so the answer is Richard Nixon. Action 3: Finish[Richard Nixon] Question: Which documentary is about Finnish rock groups, Adam Clayton Powell or The Saimaa Gesture? Thought 1: I need to search Adam Clayton Powell and The Saimaa Gesture, and find which documentary is about Finnish rock groups. Action 1: Search[Adam Clayton Powell] Observation 1: Could not find [Adam Clayton Powell]. Similar: ['Adam Clayton Powell III', 'Seventh Avenue (Manhattan)', 'Adam Clayton Powell Jr. State Office Building', 'Isabel Washington Powell', 'Adam Powell', 'Adam Clayton Powell (film)', 'Giancarlo Esposito']. Thought 2: To find the documentary, I can search Adam Clayton Powell (film). Action 2: Search[Adam Clayton Powell (film)] Observation 2: Adam Clayton Powell is a 1989 American documentary film directed by Richard Kilberg. The film is about the rise and fall of influential African-American politician Adam Clayton Powell Jr.[3][4] It was later aired as part of the PBS series The American Experience. Thought 3: Adam Clayton Powell (film) is a documentary about an African-American politician, not Finnish rock groups. So the documentary about Finnish rock groups must instead be The Saimaa Gesture. Action 3: Finish[The Saimaa Gesture] Question: What profession does Nicholas Ray and Elia Kazan have in common? Thought 1: I need to search Nicholas Ray and Elia Kazan, find their professions, then find the profession they have in common. Action 1: Search[Nicholas Ray] Observation 1: Nicholas Ray (born Raymond Nicholas Kienzle Jr., August 7, 1911 – June 16, 1979) was an American film director, screenwriter, and actor best known for the 1955 film Rebel Without a Cause. Thought 2: Professions of Nicholas Ray are director, screenwriter, and actor. I need to search Elia Kazan next and find his professions. Action 2: Search[Elia Kazan] Observation 2: Elia Kazan was an American film and theatre director, producer, screenwriter and actor. Thought 3: Professions of Elia Kazan are director, producer, screenwriter, and actor. So profession Nicholas Ray and Elia Kazan have in common is director, screenwriter, and actor. Action 3: Finish[director, screenwriter, actor] Question: Which magazine was started first Arthur's Magazine or First for Women? Thought 1: I need to search Arthur's Magazine and First for Women, and find which was started first. Action 1: Search[Arthur's Magazine] Observation 1: Arthur's Magazine (1844-1846) was an American literary periodical published in Philadelphia in the 19th century. Thought 2: Arthur's Magazine was started in 1844. I need to search First for Women next. Action 2: Search[First for Women] Observation 2: First for Women is a woman's magazine published by Bauer Media Group in the USA.[1] The magazine was started in 1989. Thought 3: First for Women was started in 1989. 1844 (Arthur's Magazine) < 1989 (First for Women), so Arthur's Magazine was started first. Action 3: Finish[Arthur's Magazine] Question: Were Pavel Urysohn and Leonid Levin known for the same type of work? Thought 1: I need to search Pavel Urysohn and Leonid Levin, find their types of work, then find if they are the same. Action 1: Search[Pavel Urysohn] Observation 1: Pavel Samuilovich Urysohn (February 3, 1898 â August 17, 1924) was a Soviet mathematician who is best known for his contributions in dimension theory. Thought 2: Pavel Urysohn is a mathematician. I need to search Leonid Levin next and find its type of work. Action 2: Search[Leonid Levin] Observation 2: Leonid Anatolievich Levin is a Soviet-American mathematician and computer scientist. Thought 3: Leonid Levin is a mathematician and computer scientist. So Pavel Urysohn and Leonid Levin have the same type of work. Action 3: Finish[yes]
Промпт который будет объединять все для ReAct
Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can reason about the current situation, and Action can be three types:
(1) Search[entity], which searches the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some similar entities to search.
(2) Lookup[keyword], which returns the next sentence containing keyword in the last passage successfully found by Search.
(3) Finish[answer], which returns the answer and finishes the task.
You may take as many steps as necessary.
Here are some examples:
{examples}
(END OF EXAMPLES)
Question: {question}
{scratchpad}question = "What is the elevation range for the area that the eastern sector of the Colorado orogeny extends into?"
answer = "1,800 to 7,000 ft"
env = QAEnv(question, answer)
agent = ReactAgent(
env,
react_inst_template,
react_example
)
prediction = agent.run()
assert prediction == answer