June 17, 2018

Технология fddi. Основные характеристики

Технология FDDI (Fiber Distributed Data Interface) — оптоволоконный интерфейс распределенных данных —это первая технология локальных сетей, в которой сре­дой передачи данных является волоконно-оптический кабель. Работы по созданию технологий и устройств для использования волоконно-оптических каналов в ло­кальных сетях начались в 80-е годы, вскоре после начала промышленной эксплуа­тации подобных каналов в территориальных сетях. Проблемная группа ХЗТ9.5 института ANSIразработала в период с 1986по 1988гг. начальные версии стандар­та FDDI,который обеспечивает передачу кадров со скоростью 100Мбит/с по двой­ному волоконно-оптическому кольцу длиной до 100км.

Основные характеристики технологии

Технология FDDIво многом основывается на технологии Token Ring,развивая и совершенствуя ее основные идеи. Разработчики технологии FDDIставили перед собой в качестве наиболее приоритетных следующие цели:

  • повысить битовую скорость передачи данных до 100Мбит/с;
  • повысить отказоустойчивость сети за счет стандартных процедур восстановле­ния ее после отказов различного рода —повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;
  • максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) графиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети.Наличие двух колец — это основной способ повышения отказоустойчивости в сети FDDI,и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участ­ки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru — «сквозным» или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рис.9.8),вновь образуя единое кольцо.Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец.Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI.Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изобра­жается против часовой стрелки), а по вторичному — в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передат­чики станций по-прежнему остаются подключенными к приемникам соседних стан­ций, что позволяет правильно передавать и принимать информацию соседними станциями.

В стандартах FDDIмного внимания отводится различным процедурам, кото­рые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию.Сеть FDDI может полностью восстанавливать свою работоспо­собность в случае единичных отказов ее элементов.При множественных отказах сеть распадается на несколько не связанных сетей. Технология FDDIдополняет механизмы обнаружения отказов технологии Token Ringмеханизмами реконфигу­рации пути передачи данных в сети, основанными на наличии резервных связей, обеспечиваемых вторым кольцом.

Рис.9. 8 Реконфигурация колец FDDIпри отказе

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ringи также называется методом маркерного (или токенного) кольца — token ring.

Отличия метода доступа заключаются в том, что время удержания маркера в сети FDDI не является постоянной величиной, как в сети Token Ring.Это время зависит от загрузки кольца —при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля.Эти изменения в методе досту­па касаются только асинхронного графика, который не критичен к небольшим задержкам передачи кадров. Для синхронного графика время удержания маркера по-прежнему остается фиксированной величиной.

Адреса уровня MACимеют стандартный для технологий IEEE 802формат.

На рис. 9.9приведено соответствие структуры протоколов технологии FDDI семиуровневой модели OSI. FDDIопределяет протокол физического уровня и протокол подуровня доступа к среде (MAC)канального уровня. Как и во многих других технологиях локальных сетей, в технологии FDDIиспользуется протокол подуровня управления каналом данных LLC,определенный в стандарте IEEE 802.2. Таким образом, несмотря на то что технология FDDIбыла разработана и стандар­тизована институтом ANSI,а не комитетом IEEE,она полностью вписывается в структуру стандартов 802.

Рис.9. 9 Структура протоколов технологии FDDI

Отличительной особенностью технологии FDDI является уровень управления станцией — Station Management (SMT),Именно уровень SMT выполняет все функ­ции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI.Поэтому все узлы обмениваются специальными кадрами SMTдля управления сетью.

Отказоустойчивость сетей FDDIобеспечивается протоколами и других уров­ней: с помощью физического уровня устраняются отказы сети по физическим при­чинам, например из-за обрыва кабеля, а с помощью уровня MAC —логические отказы сети, например потеря нужного внутреннего пути передачи маркера и кад­ров данных между портами концентратора.