July 2, 2022

TEST YOUR EYE IS OR NOT HAVE COLOR BLINDNESS

ISHIHARA COLORBLIND TEST

The test use random 20 plates from ishihara plates.

The Ishihara test is a color The test consists of a number of Ishihara plates, each of which depicts a solid circle of colored dots appearing randomized in color and size. Within the pattern are dots which form a number or shape clearly visible to those with normal color vision, and invisible, or difficult to see, to those with a red-green color vision defect. test for red-green color deficiencies.

WHAT CAUSED COLOR BLIND?

The eye can recognize colors because there are cells called cone cells in the retina.

The average person has three types of cone cells, which can sense light of different wavelengths (including blue, green, and red, which are the three primary colors of light).

When light enters our eyes, these cone cells will produce different excitement according to the wavelength of the light, and then transmit the signal to our brain, allowing us to acquire the ability to recognize colors.

Therefore, the cause of color weakness/color blindness is that the function of one/several types of cone cells is affected, which makes the patient’s perception of color worse than ordinary people.

Because we have three types of cone cells, there are also grades for color weakness/color blindness:

Monochromacy:Monochromatic perception, that is, complete color blindness, loss of two or three cone cell functions
Dichromacy: Two-color perception, that is, loss of red/green/blue cone cell function
Trichromacy: Trichromacy has the functions of three cone cells, but the light-sensitive spectrum of one of them has shifted, resulting in deviation of color perception

About 99% of all color blind people are red green color blind. over 8% of men and 0.5% of men have from it.

4 TYPES OF RED GREEN COLOR BLIND

Deuteranopia

Deuteranopia is the most serious form of red-green color blindness.

It cannot perceive green. The patient cannot distinguish between light green and dark red, purple and cyan, magenta and gray, and treats green as gray or dark black.

In an art training class, a kid who painted very well always painted the sun green and tree crowns and grass brown. It turned out that he was a green blind patient. Clinically, red blindness and green blindness are collectively referred to as red-green blindness, and patients are more common. The color blindness we usually refer to generally refers to red-green color blindness.

Deuteranomaly

Deuteranomaly weak green. Red and green are more common. They have poor sensitivity to red and green. When the lighting is poor, their color discrimination ability is close to red-green blindness; but when the material color is deep, bright and the illumination is good, its color discrimination ability is close normal.

Protanopia

Protanopia is also known as the No 1 color blindness. The patient mainly cannot distinguish red, and cannot distinguish red from dark green, purplish red, and purple. Green is often regarded as yellow, purple is regarded as blue, and yellow and blue are mixed into white. There was a middle-aged man with a mature and serious attitude who bought a red woolen sweater and ridiculed it after putting it on.

It turned out that he was a protanopia patient who mistakenly made red for gray. There were reports in the early years that a protagonist who had become a train driver misread the signal and caused the train to collide.

Protanomaly

Protanomaly Red weakness, red looks greener and less bright.

Reaction Time Test

In the Reaction Time Test, developed by Prof. Dr. W. Brouwer, the client is requested to place the pen on a white circle in the center of the tablet. Around it is an arch of black circles. At specific intervals, one of the circles in the arch lights up in clear white. The client is supposed to tick the highlighted circle as fast as possible and then to return back to the center circle.

In total, there are 48 trials, of which the first 16 are practice trials. In the second condition, an incompatible reaction concept requires the client to tick the vertically mirrored circle instead of the one that lights up. Here, the client’s inhibition is tested.

We measure both the decision time (the interval between the stimulus and lifting the pen from the center circle) as well as the movement time. The movement time is the interval between lifting the pen from the center circle and touching the target circle. The following image shows a screenshot of the test.