То, что называется ЖЕЛЕЗО
April 7, 2019

ЦП(Центральный процессор)

ЦП или Центральный процессор (CPU - Central Processing Unit, центральное обрабатывающее устройство) - основной компонент(элемент) компьютера, с помощью которого обрабатывается информация, которая находится как в собственной памяти, так и в памяти других устройств. Помимо этого – ЦП руководит работой других устройств.

Использование микропроцессоров

Такое устройство, как процессор, интегрируется практически в любой электронной техники: что говорить о таких устройствах как телевизор и видеоплеер; даже в игрушках!; а смартфоны сами по себе уже являются компьютерами, хоть и отличаются по конструкции.

Так и в персональном компьютере, да и всей компьютерной системе центральный процессор не является единственным. Видеоплата является ярким представителем устройства имеющего свой собственный микрочип процессора GPU (Graphics Processing Unit) – графический процессор.

Как устроен процессор

Сам процессор состоит из десятка миллионов транзисторов, а может уже и больше, при помощи которых собраны отдельный логические схемы, находящиеся в специальном кремниевом корпусе. Именно из-за кристалла кремния очень часто его называют «Камень».

В основе внутренних схем процессора лежит арифметико-логическое устройство, внутренняя память (регистры), и кэш-память (сверх память), которые в свою очередь образуют ядро процессора, а также схемы для управления всеми операциями и схемы управления с внешними устройствами – шинами.

Что такое процессор: архитектура и технологический процесс

Архитектура процессора – это его внутреннее устройство, различное расположение элементов так же обуславливает его характеристики. Сама архитектура присуща целому семейству процессоров, а изменения, внесённые и направленные на улучшения или исправления ошибок, имеют название степпинг.

Технологический процесс определяет размер комплектующих самого процессора и измеряется в нанометрах (нм), а меньшие размеры транзисторов определяют меньший размер самого процессора, на что и направлена разработка будущих CPU.

Процессоры в смартфонах

По сути, говорить, что в смартфоне используется процессор, неправильно, так как процессоры как таковые в мобильных устройствах не используются. Процессор вместе с другими компонентами образуют SoC (System on a chip – система на кристалле), а это значит, что на одной микросхеме находится полноценный компьютер с процессором, графическим ускорителем и другими компонентами.

Современные смартфоны используют процессоры на архитектуре ARM, разработкой которой занимается одноименная компания ARM Limited. Компании Qualcomm, Nvidia, Samsung, MediaTek, Apple и др., занимающиеся производством процессоров, лицензируют технологию у ARM и затем продают готовые чипы производителям смартфонов или же используют их в собственных устройствах. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии. Компания ARM Limited не производит процессоры, а только продает лицензии на свои технологии другим производителям.

Характеристики ЦП:

  • Тактовая частота
  • Разрядность процессора
  • Кэш-память
  • Socket
  • Многоядерность
  • Потоки

Тактовая частота

Частота - количество обрабатываемой информации в секунду;

Характеризует быстродействие компьютера. Режим работы процессора задается микросхемой, называемой генератором тактовых импульсов. На выполнение процессором каждой операции отводится определенное количество тактов. Тактовая частота указывает, сколько элементарных операций выполняет микропроцессор за одну секунду. Она измеряется в МГц или ГГц;

По факту, выполнение одной операции может быть разделено на несколько тактов, при этом возможно фактическое снижение её значения. Однако при мощности современных процессоров незначительно снижение тактовой частоты в ходе выполнения сложных операций совершенно незаметно.

Разрядность процессора

Разрядность процессора - это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция. Чем больше разрядность процессора, тем больше информации он может обрабатывать в единицу времени и тем больше, при прочих равных условиях, производительность компьютера;

По факту разрядность показывает поддерживает ли процессор только 32-битные или же может поддерживать 64-битные приложения.

Большинство современных процессоров поддерживает 64-битную архитектуру.

Подобное разделение также влияет на количество доступной оперативной памяти (до 4 Гб в 32-битных приложениях и больше 4-Гб в 64-битных), а также на внутренние параметры, которые редко учитываются обычными пользователями и имеют значения только для для специалистов, например, разработчиков ПО.

Кэш-память

Данные для последующей работы процессор получает из оперативной памяти, но внутри микросхем процессора сигналы обрабатываются с очень высокой частотой, а сами обращения к модулям ОЗУ проходят с частотой в разы меньше.

Впроцессоре немного ячеек для обработки данных, называемые регистрами, в них он обычно почти ничего не хранит, а для ускорения, как работы процессора, так и вместе с ним компьютерной системы была интегрирована технология кэширования.

Кэшем можно назвать небольшой набор ячеек памяти, в свою очередь выполняющих роль буфера. Когда происходит считывание из общей памяти, копия появляется в кэш-памяти центрального процессора. Нужно это для того, чтобы при потребности в тех же данных доступ к ним был прямо под рукой, то есть в буфере, что увеличивает быстродействие.

Уровни кэш-памяти:

  1. Кэш-память 1-го уровня – самая наименьшая по объёму, но в тоже время самая быстрая по скорости, входит в состав кристалла процессора. Производится по тем же технологиям, что и регистры процессора, очень дорогая, но это стоит её скорости и надёжности. Хоть и измеряется сотнями килобайт, что очень мало, но играет огромную роль в быстродействие.
  2. Кэш-память 2-го уровня – так же, как и 1-го уровня расположена на кристалле процессора и работает с частотой его ядра. В современных процессорах измеряется от сотен килобайт до нескольких мегабайт.
  3. Кэш-память 3-го уровня медленнее предыдущих уровней этого вида памяти, но является быстродейственней оперативной памяти, что немаловажно, а измеряется десятками мегабайт.

Размеры кэш-память 1-го и 2-го уровней влияют как на производительность, так и на стоимость процессора. Третий уровень кэш-памяти — это своеобразный бонус в работе компьютера, но не один из производителей микропроцессоров им пренебрегать не спешит. Кэш-память 4-го уровня существует и оправдывает себя лиши в многопроцессорных системах, именно поэтому на обыкновенно компьютере его найти не удастся.

Socket

Понимание того, что современные технологии не на столько продвинуты, что процессор сможет получать информацию на расстояние, не переменно он должен крепиться, крепиться к материнской плате, устанавливаться в неё и с ней взаимодействовать. Это место крепление называется Soket и подойдёт только для определённого типа или семейства процессоров, которое у разных производителей тоже различны.

Многоядерность

К сожалению, многие люди ложно полагают, что объединение двух ядер в одном процессоре приводит к двукратному увеличению производительности компьютера, но на самом деле все не так. Многоядерные процессоры изначально создавались для многозадачной среды, тогда когда использование всего потенциала двух или четырех ядер в однозадачной среде просто невозможно.

Задача – это запущенная программа, процесс, а многозадачная средаоперационная система, где выполняются несколько задач одновременно. Проще говоря, чтобы вы запустив антивирусник не ждали, а могли еще послушать музыку используя незанятые мощности второго ядра.

Стоимость четырех- и восьмиядерных компьютеров сегодня может сильно разниться, ведь все зависит от характеристик ядра процессора, а в частности от степени тепловыделения (рабочая температура ядра), уровня FSB, объема кэша на уровнях L1, L2, L3, а так же стоимости других модулей компьютера.

Со смартфонами всё проще:

Большинство современных приложений являются однопотоковыми и поэтому одновременно могут использовать только одно или два ядра. Естественно возникает вопрос, для чего тогда четырехъядерный процессор? Многоядерность, в основном, используется продвинутыми играми и приложениями по редактированию мультимедийных файлов. А это значит, что если вам нужен смартфон для игр (трехмерные игры) или съемки Full HD видео, то необходимо приобретать аппарат с четырехъядерным процессором. Если же программа сама по себе не поддерживает многоядерность и не требует затраты больших ресурсов, то неиспользуемые ядра автоматически отключаются для экономии заряда батареи. Часто для самых неприхотливых задач используется пятое ядро-компаньон, например, для работы устройства в спящем режиме или при проверке почты.

Если вам нужен обыкновенный смартфон для общения, интернет-серфинга, проверки почты или для того, чтобы быть в курсе всех последних новостей, то вам вполне подойдет и двухъядерный процессор.

Потоки

Технология потоков называется Hyper-threading и отображается сокращенно: HT (как правило указывается на коробках сбоку).

Hyper-threading позволяет хранить состояние сразу двух потоков, поэтому в из под Windows такие потоки выглядят как ядра. То есть, если у вас имеет процессор 2 ядра, то это 4 потока. Соответственно я имею ввиду процессор, который поддерживает Hyper-threading.

Как работает Hyper-threading? Чтобы вы понимали, то процессор выполняет не только ваши задачи, но и другие, и в том числе служебные. Так вот, обрабатывая данные, поток потом их отправляет, или ждет новых данных из оперативной памяти. В это время, пока он ждет, он может помогать другому потоку. То есть Hyper-threading призван увеличить производительность процессора, уменьшая время бездействия.

Также плюсом является то, что не только система видит такие потоки как настоящие ядра, но и программы, и если программа умеет распараллеливать свою работу, то скорость ее работы будет выше с потоками, чем без.