Robotics are Transforming the Healthcare World
Rehabilitation robot is mechanically operated medical device which is designed to improve the movements in individuals with physical impaired functioning. The rehabilitation robots used as a substitute for lost limb movements caused by neurological or traumatic events.
Stroke is the major cause of adult disability, such as gait impairment. The device consists a wide range of portable and stationary electromechanical assisted training devices to improve the lost body functions.
Download PDF Brochure of Study Research Here
Current robotic devices include exoskeletons for aiding limb or hand movement such as the Tibion Bionic Leg, the Myomo Neuro-robotic System, MRISAR's STRAC (Symbiotic Terrain Robotic Assist Chair) and the Berkeley Bionics eLegs; enhanced treadmills such as Hocoma's Lokomat; robotic arms to retrain motor movement of the limb such as the MIT-MANUS, and finger rehabilitation devices such as tyromotion's AMADEO. Some devices are meant to aid strength development of specific motor movements, while others seek to aid these movements directly.
Often robotic technologies attempt to leverage the principles of neuroplasticity by improving quality of movement, and increasing the intensity and repetition of the task. Over the last two decades, research into robot mediated therapy for the rehabilitation of stroke patients has grown significantly as the potential for cheaper and more effective therapy has been identified. Though stroke has been the focus of most studies due to its prevalence in North America, rehabilitation robotics can also be applied to individuals (including children) with cerebral palsy, or those recovering from orthopaedic surgery.
The MIT-MANUS in particular has been studied as a means of providing individualized, continuous therapy to patients who have suffered a stroke by using a performance-based progressive algorithm. The responsive software allows the robot to alter the amount of assistance it provides, based on the patient's speed and timing of movement. This allows for a more personalized treatment session without the need for constant therapist interaction.
An additional benefit to this type of adaptive robotic therapy is a marked decrease in spasticity and muscle tone in the affected arm. Different spatial orientations of the robot allow for horizontal or vertical motion, or a combination in a variety of planes. The vertical, anti-gravity setting is particularly useful for improving shoulder and elbow function.