April 1, 2020

Lactic acidosis: an update Ссылки

1. Leverve X, Mustafa I, Péronnet F. Pivotal role of lactate in aerobic metabolism. In: Vincent J, editor. Berlin: Springer-Verlag, 1998.

2. Leverve XM. Energy metabolism in critically ill patients: lactate is a major oxidizable substrate. Curr Opin Clin Nutr Metab Care 1999;2:165–9.

3. Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit-Rodriguez J, et al. Low lactate dehydrogenase and high mitochondrial glyc- erol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J Biol Chem 1994;269:4895–902.

4. Cano N. Bench-to-bedside review: glucose production from the kidney. Crit Care (London, England) 2002;6:317–21.

5. Tayek JA, Katz J. Glucose production, recycling, Cori cycle, and gluconeogenesis in humans: relationship to serum cortisol. Am J Physiol 1997;272(3 Pt 1):E476–84.

6. Bellomo R. Bench-to-bedside review: lactate and the kidney. Crit Care 2002;6:322–6.

7. Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev 1997;77:321–58.

8. Juel C. Muscle pH regulation: role of training. Acta Physiol Scand 1998;162:359–66.

9. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol 2004;558:5–30.

10. Margaria R, Edwards RHT, Dill DB, J. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am 1933;106:689–715.

11. Wasserman K. The anaerobic threshold measurement to evalu- ate exercise performance. Am Rev Respir Dis 1984;129(2 Pt 2):S35–40.

12. Brooks GA. Lactate: glycolytic end product and oxidative substrate during sustained exercise in mammals – the “lactate shuttle”. Circ Respir Metab Proc Life Sci . 1985:208–18.

13. Brooks GA. Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc 2000;32:790–9.

14. Gladden LB. Muscle as a consumer of lactate. Med Sci Sports Exerc 2000;32:764–71.

15. Richter EA, Kiens B, Saltin B, Christensen NJ, Savard G. Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass. Am J Physiol 1988;254(5 Pt 1):E555–61.

16. Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Prog Neurobiol 2000;61:397–414.

17. Stanley WC. Myocardial lactate metabolism during exercise. Med Sci Sports Exerc 1991;23:920–4.

18. Miller BF, Fattor JA, Jacobs KA, Horning MA, Navazio F, Lindinger MI, et al. Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J Physiol 2002;544(Pt 3):963–75.

19. Miller BF, Fattor JA, Jacobs KA, Horning MA, Suh S-H, Navazio F, et al. Metabolic and cardiorespiratory responses to “the lactate clamp”. Am J Physiol Endocrinol Metab 2002;283:E889–98.

20. Brooks GA. Cell-cell and intracellular lactate shuttles. J Physiol 2009;587(Pt 23):5591–600.

21. Skelton MS, Kremer DE, Smith EW, Gladden LB. Lactate influx into red blood cells from trained and untrained human subjects. Med Sci Sports Exerc 1998;30:536–42.

22. Smith GC, Clarke DM, Handrinos D, Dunsis A. Consultation-liai- son psychiatrists management of depression. Psychosomatics 1998;39:244–52.

23. Brooks GA. Mammalian fuel utilization during sustained exer- cise. Comp Biochem Physiol Mol Biol 1998;120:89–107.

24. Brooks GA. Lactate shuttles in nature. Biochem Soc Trans 2002;30:258–64.

  1. Gladden LB. Lactate uptake by skeletal muscle. Exerc Sport Sci Rev 1989;17:115–55.
  2. Kurtz I, Kraut J, Ornekian V, J. Acid-base analysis: a critique of Stewart and bicarbonate-centered approaches. Am Renal Physiol 2008;295:F1009–31.
  3. Corey HE. Stewart and beyond: new models of acid-base bal- ance. Kidney Int 2003;64:777–87.
  4. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise- induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004;287:R502–16.
  5. Robergs RA, Ghiasvand F, Parker D. The wandering argu- ment favoring a lactic acidosis. Am Regul Integr Comp Physiol 2006;291:R238–39.
  6. Fencl V, Leith DE. Stewart’s quantitative acid-base chemistry: applications in biology and medicine. Respir Physiol 1993;91: 1–16.
  7. Stewart PA. How to understand acid-base. New York, NY: Else- vier, 1981.
  8. Kruse O, Grunnet N, Barfod C. Blood lactate as a predictor for in-hospital mortality in patients admitted acutely to hospi- tal: a systematic review. Scand J Trauma Resusc Emerg Med 2011;19:74.
  9. Brinkman K. Editorial response: hyperlactatemia and hepatic steatosis as features of mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors. Clin Infect Dis 2000;31:167–9.
  10. Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol 2007;2:162–74.
  11. Wrenn K. The delta (delta) gap: an approach to mixed acid-basedisorders. Ann Emerg Med 1990;19:1310–3.
  12. Kim HY, Han JS, Jeon US, Joo KW, Earm JH, Ahn C, et al. Clinicalsignificance of the fractional excretion of anions in metabolicacidosis. Clin Nephrol 2001;55:448–52.
  13. Bakker J. Blood lactate levels. Curr Opin Crit Care 1999;5:234–9.
  14. Cohen RD, Woods HF. The clinical presentation and classi-fication of lactic acidosis. Oxford, UK: Blackwell Scientific,1976:1–200.
  15. Fall PJ, Szerlip HM. Lactic acidosis: from sour milk to septicshock. J Intensive Care Med 2005;20:255–71.
  16. Kraut JA, Madias NE. Lactic acidosis. N Engl J Med2014;371:2309–19.
  17. Wang DS, Kusuhara H, Kato Y, Jonker JW, Schinkel AH, SugiyamaY. Involvement of organic cation transporter 1 in the lactic acido-sis caused by metformin. Mol Pharmacol 2003;63:844–8.
  18. DeFronzo R, Fleming GA, Chen K, Bicsak TA. Metformin-associ-ated lactic acidosis: Current perspectives on causes and risk.Metabolism 2016;65:20–9.
  19. Feenstra RA, Kiewiet MKP, Boerma EC, ter Avest E. Lactic acidosis indiabetic ketoacidosis. BMJ Case Rep. 2014;2014:bcr2014203594.
  20. Swietach P, Vaughan-Jones RD, Harris AL, Hulikova A. The chem-istry, physiology and pathology of pH in cancer. Philos Trans RSoc Lond B Biol Sci 2014;369:20130099.
  21. Okorie ON, Dellinger P. Lactate: biomarker and potential thera-peutic target. Crit Care Clin 2011;27:299–326.
  22. Friedenberg AS, Brandoff DE, Schiffman FJ. Type B lactic acidosisas a severe metabolic complication in lymphoma and leukemia: a case series from a single institution and literature review. Medicine (Baltimore) 2007;86:225–32.
  23. Suzuki K, Tanaka S, Uchida T, Nakazawa K, Makita K. Catecho- lamine release induces elevation in plasma lactate levels in

patients undergoing adrenalectomy for pheochromocytoma.

J Clin Anesth 2014;26:616–22.
48. Taliercio JJ, Bravo E. An unusual presentation of pheochromocy-

toma. NDT Plus 2011;4:331–4.
49. Heinig RE, Clarke EF, Waterhouse C. Lactic acidosis and liver

disease. Arch Intern Med 1979;139:1229–32.
50. El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome:

Clinical manifestations, pathogenesis, and treatment options.

Mol Genet Metab 2015;116:4–12.
51. Oriot D, Wood C, Gottesman R, Huault G. Severe lactic acidosis

related to acute thiamine deficiency. JPEN J Parenter Enteral Nutr

1991;15:105–9.
52. Shah S, Wald E. Type B lactic acidosis secondary to thiamine

deficiency in a child with malignancy. Pediatrics 2015;135:

e221–4.
53. Anderson SL, Borgelt LM. Case report: risk of uterine perforation

from IUDs is greatest during postpartum period. Am Fam Physi-

cian 2013;88:634–6.
54. Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H. Effect of sepsis

on activity of pyruvate dehydrogenase complex in skeletal mus-

cle and liver. Am J Physiol 1986;250(6 Pt 1):E634–40.
55. Wolfe RR, Jahoor F, Herndon DN, Miyoshi H. Isotopic evaluation of the metabolism of pyruvate and related substrates in normal adult volunteers and severely burned children: effect of dichlo-

roacetate and glucose infusion. Surgery 1991;110:54–67.
56. Gore DC, Jahoor F, Hibbert JM, DeMaria EJ. Lactic acidosis during

sepsis is related to increased pyruvate production, not deficits

in tissue oxygen availability. Ann Surg 1996;224:97–102.
57. Levy B, Desebbe O, Montemont C, Gibot S. Increased aerobic glycolysis through beta2 stimulation is a common mecha-

nism involved in lactate formation during shock states. Shock

2008;30:417–21.
58. Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter

S, Curry SH, et al. Natural history and course of acquired lactic acidosis in adults. DCA-Lactic Acidosis Study Group. Am J Med 1994;97:47–54.

59. Khosravani H, Shahpori R, Stelfox HT, Kirkpatrick AW, Laup- land KB. Occurrence and adverse effect on outcome of hyper- lactatemia in the critically ill. Crit Care (London, England) 2009;13:R90.

60. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 1991;99:956–62.

61. Jansen TC, van Bommel J, Mulder PG, Rommes JH, Schieveld SJM, Bakker J. The prognostic value of blood lactate levels relative to that of vital signs in the pre-hospital setting: a pilot study. Crit Care (London, England) 2008;12:R160.

62. Polonen P, Ruokonen E, Hippelainen M. A prospective, rand- omized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 2000;90:1052–9.

63. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA, et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. J Am Med Assoc 2010;303:739–46.

64. Bakker J, Nijsten MW, Jansen TC. Clinical use of lactate monitor- ing in critically ill patients. Ann Intensive Care 2013;3:12.

65. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 2010;182:752–61.

  1. Marik PE, Bellomo R. Lactate clearance as a target of therapy in sepsis: a flawed paradigm. OA Critical Care 2013;1:3–8.
  2. Noordally O, Vincent JL. Evaluation of a new, rapid lactate ana- lyzer in critical care. Intensive Care Med 1999;25:508–13.
  3. National Academy of Clinical Biochemistry. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Draft Guidelines: Evidence Based Practice for POCT 2004 [cited 2006 Sep 12]. Available from: http://www.aacc.org/AACC/ members/nacb/LMPG/OnlineGuide/DraftGuidelines/EB_for_ POCT2004.
  4. Karon BS, Scott R, Burritt MF, Santrach PJ. Comparison of lactate values between point-of-care and central laboratory analyzers. Am J Clin Pathol 2007;128:168–71.
  5. Hollaar L, Van der Laarse A. Interference of the measurement
    of lactate dehydrogenase (LDH) activity in human serum and plasma by LDH from blood cells. Clin Chim Acta 1979;99:135–42.
  6. Biedler A, Schneider S, Bach F. Methodological aspects of lactate measurement-evaluation of the accuracy of photometric and biosensor methods. Open Anesthesiol J 2007;1:1–5.
  7. White R, Yaeger D, Stavrianeas S. Determination of blood lactate concentration: reliability and validity of a lactate oxidase-based method. J Int Sci 2009;2:83–93.
  8. Takayesu JK, Bazari H, Linshaw M. Case records of the Mas- sachusetts General Hospital. Case 7-2006. A 47-year-old man with altered mental status and acute renal failure. N Engl J Med 2006;354:1065–72.
  9. Parry MF, Wallach R. Ethylene glycol poisoning. Am J Med 1974;57:143–50.
  10. Jacobsen D, McMartin KE. Methanol and ethylene glycol poison- ings. Mechanism of toxicity, clinical course, diagnosis and treat- ment. Med Toxicol 1986;1:309–34.
  11. Hewlett TP, McMartin KE, Lauro AJ, Ragan FA. Ethylene glycol poisoning. The value of glycolic acid determinations for diagno- sis and treatment. J Clin Toxicol 1986;24:389–402.
  12. Porter WH. Ethylene glycol poisoning: quintessential clinical toxicology; analytical conundrum. Clin Chim Acta. 2012;413: 365–77.
  13. Pernet P, Bénéteau-Burnat B, Vaubourdolle M, Maury E, Offen- stadt G. False elevation of blood lactate reveals ethylene glycol poisoning. Am J Emerg Med 2009;27:132.e1–2.
  14. Verelst S, Vermeersch P, Desmet K. Ethylene glycol poisoning presenting with a falsely elevated lactate level. Clin Toxicol (Phila) 2009;47:236–8.
  15. Woo MY, Greenway DC, Nadler SP. Artifactual elevation of lactate in ethylene glycol poisoning. J Med 2003;23:289–93.
  16. Manini AF, Hoffman RS, McMartin KE, Nelson LS. Relationship between serum glycolate and falsely elevated lactate in severe ethylene glycol poisoning. J Anal Toxicol 2009;33:174–6.
  17. Meng QH, Adeli K, Zello GA, Porter WH, Krahn J. Elevated lactate in ethylene glycol poisoning: true or false? Clin Chim Acta 2010;411:601–4.
  18. Ewaschuk JB, Naylor JM, Zello GA. D-lactate in human and rumi- nant metabolism. J Nutr 2005;135:1619–25.

84. Drury DR. Chemistry and metabolism of L(+) and D(-0 lactic acids. Ann N Y Acad Sci 1965;119:1061–9.

85. Dunlop RH, Hammond PB. D-lactic acidosis of ruminants. Ann N Y Acad Sci 1965;119:1109–32.

86. Hove H, Mortensen PB. Colonic lactate metabolism and D-lactic acidosis. Dig Dis Sci 1995;40:320–30.

87. Smith SM, Eng RH, Buccini F. Use of D-lactic acid measure- ments in the diagnosis of bacterial infections. J Infect Dis 1986;154:658–64.

88. Uribarri J, Oh MS, Carroll HJ. D-lactic acidosis. A review of clini- cal presentation, biochemical features, and pathophysiologic mechanisms. Medicine 1998;77:73–82.

89. Cammack R. Assay, purification and properties of mammalian D-2-hydroxy acid dehydrogenase. Biochem J 1969;115:55–64. 90. Tubbs PK. The metabolism of D-alpha-hydroxy acids in animal

tissues. Ann N Y Acad Sci 1965;119:920–6.
91. Rabbani N, Thornalley PJ. The critical role of methylglyoxal and

glyoxalase 1 in diabetic nephropathy. Diabetes 2014;63:50–2. 92. Halperin ML, Kamel KS. D-lactic acidosis: turning sugar into

acids in the gastrointestinal tract. Kidney Int 1996;49:1–8. 93. Halverson J, Gale A, Lazarus C. D-lactic acidosis and other

complications of intestinal bypass surgery. Arch Intern Med

1984;144:357–60.
94. Oh MS, Uribarri J, Alveranga D, Lazar I, Bazilinski N, Carroll HJ.

Metabolic utilization and renal handling of D-lactate in men.

Metabolism 1985;34:621–5.
95. LaManna JC, Harrington JF, Vendel LM, Abi-Saleh K, Lust

WD, Harik SI. Regional blood-brain lactate influx. Brain Res

1993;614:164–70.
96. Martí R, Varela E, Segura RM, Alegre J, Suriñach JM, Pascual C.

Determination of D-lactate by enzymatic methods in biologi- cal fluids: study of interferences. Clin Chem 1997;43(6 Pt 1):1010–5.

97. De Vrese M, Barth CA. Postprandial plasma D-lactate concentrations after yoghurt ingestion. Z Ernahrungswiss 1991;30:131–7.

98. Connolly E, Lonnerdal B. D(-)-Lactic acid-producing bacteria: Safe to use in infant formulas. Nutrafoods 2004;3:37–49.

99. Lu J, Zello GA, Randell E, Adeli K, Krahn J, Meng QH. Closing the anion gap: contribution of D-lactate to diabetic ketoacidosis. Clin Chim Acta 2011;412:286–91.

100. Bo J, Li W, Chen Z, Wadden DG, Randell E, Zhou H, et al. D-lactate: a novel contributor to metabolic acidosis and high anion gap in diabetic ketoacidosis. Clin Chem 2013;59:1406–7.

101. Evennett NJ, Petrov MS, Mittal A, Windsor JA. Systematic review and pooled estimates for the diagnostic accuracy of serological markers for intestinal ischemia. World J Surg 2009;33:1374–83.

102. Murray MJ, Barbose JJ, Cobb CF. Serum D(-)-lactate levels as a predictor of acute intestinal ischemia in a rat model. J Surg Res 1993;54:507–9.

103. Demir IE, Ceyhan GO, Friess H. Beyond lactate: is there a role for serum lactate measurement in diagnosing acute mesenteric ischemia? Dig Surg 2012;29:226–35.