КОНТЕКСТ-ИНЖИНИРИНГ: ПОЛНОЕ РУКОВОДСТВО ДЛЯ ПРОФИ
От теории до production-ready систем
Продвинутая методичка для специалистов с техническим бэкграундом
ВВЕДЕНИЕ: ПАРАДИГМАЛЬНЫЙ СДВИГ В AI-РАЗРАБОТКЕ
Промпт-инжиниринг умер с появлением мощных языковых моделей. Контекст-инжиниринг - это новая дисциплина на стыке информационной архитектуры, ML engineering и системного анализа.
Ключевой инсайт: Современные LLM обладают достаточными reasoning capabilities, но нуждаются в quality context для генерации релевантных и точных ответов.
ГЛАВА 1: АРХИТЕКТУРА ИНФОРМАЦИОННЫХ СЛОЕВ
1.1 Таксономия данных по volatility
Профессиональные контекстные системы используют многослойную архитектуру данных, классифицированную по частоте изменений:
STATIC = "static" # TTL: 30+ days
SEMI_STATIC = "semi_static" # TTL: 7-30 days
DYNAMIC = "dynamic" # TTL: 1-24 hours
REAL_TIME = "real_time" # TTL: < 1 hour
EPHEMERAL = "ephemeral" # Session-based
- Static layer: Vector database (Pinecone, Weaviate)
- Semi-static layer: Redis с TTL + vector indexing
- Dynamic layer: API calls с кэшированием
- Real-time layer: WebSocket connections
- Ephemeral layer: In-memory session storage
1.2 Информационная энтропия и приоритизация
Используем information-theoretic подходы для ранжирования данных:
def calculate_information_value(document, query_context):
# Shannon entropy для оценки информативности
entropy = -sum(p * log2(p) for p in word_probabilities(document))
similarity = cosine_similarity(
age_factor = exp(-0.1 * days_since_update(document))
return entropy * similarity * age_factor
ГЛАВА 2: ADVANCED RAG ARCHITECTURES
2.1 Multi-step Retrieval Pipeline
Классический RAG (Retrieval-Augmented Generation) эволюционировал в sophisticated multi-stage systems:
Query → Intent Classification → Multi-vector Search →
→ Re-ranking → Context Assembly → LLM Generation
self.intent_classifier = IntentClassifier()
'dense': PineconeVectorStore(),
'sparse': ElasticsearchStore(),
self.reranker = CrossEncoderReranker()
async def retrieve_and_generate(self, query: str) -> str:
intent = await self.intent_classifier.predict(query)
# Parallel retrieval from multiple stores
self.dense_search(query, intent),
self.sparse_search(query, intent),
self.hybrid_search(query, intent)
raw_results = await asyncio.gather(*tasks)
fused_results = self.reciprocal_rank_fusion(raw_results)
reranked = await self.reranker.rerank(query, fused_results)
# Context assembly с учетом token limits
context = self.assemble_context(reranked, max_tokens=8000)
return await self.llm.generate(query, context)
2.2 Agentic RAG с Tool Use
Следующее поколение RAG-систем использует agentic workflows:
'vector_search': VectorSearchTool(),
async def process_query(self, query: str) -> str:
# LLM планирует последовательность actions
plan = await self.planner.create_plan(query, self.tools)
if action.tool == 'vector_search':
result = await self.vector_search(action.parameters)
elif action.tool == 'sql_query':
result = await self.execute_sql(action.parameters)
# Adaptive planning - корректировка плана на основе промежуточных результатов
if self.should_replan(results, plan):
plan = await self.planner.replan(query, results, remaining_actions)
return self.synthesize_response(query, results)
ГЛАВА 3: ВЕКТОРИЗАЦИЯ И EMBEDDING STRATEGIES
3.1 Domain-specific Embeddings
Универсальные embedding модели (text-embedding-ada-002) показывают субоптимальную performance на специализированных доменах.
def create_domain_embeddings(domain_corpus, base_model="sentence-transformers/all-MiniLM-L6-v2"):
# Positive pairs - semantically related chunks
chunks = semantic_chunking(doc)
for i, chunk in enumerate(chunks):
train_examples.append(InputExample(
negative_chunk = find_hard_negative(chunk, domain_corpus)
train_examples.append(InputExample(
texts=[chunk, negative_chunk],
model = SentenceTransformer(base_model)
model.fit(train_examples, epochs=3, warmup_steps=1000)
3.2 Hybrid Dense-Sparse Retrieval
Комбинирование dense (semantic) и sparse (keyword-based) search для optimal recall:
def __init__(self, alpha=0.7):
self.dense_retriever = DensePassageRetriever()
self.sparse_retriever = BM25Retriever()
self.alpha = alpha # Weight for dense vs sparse
def search(self, query: str, k: int = 10) -> List[Document]:
dense_scores = self.dense_retriever.search(query, k=k*2)
sparse_scores = self.sparse_retriever.search(query, k=k*2)
dense_scores = self.normalize_scores(dense_scores)
sparse_scores = self.normalize_scores(sparse_scores)
for doc_id, score in dense_scores.items():
combined_scores[doc_id] = self.alpha * score
for doc_id, score in sparse_scores.items():
combined_scores[doc_id] += (1 - self.alpha) * score
combined_scores[doc_id] = (1 - self.alpha) * score
return sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)[:k]
ГЛАВА 4: ПРОДВИНУТЫЕ ТЕХНИКИ КОНТЕКСТНОЙ ПАМЯТИ
4.1 Hierarchical Memory Architecture
Inspiration от human cognitive architecture:
self.sensory_buffer = SensoryBuffer(capacity=100, ttl=60) # 1 min
self.working_memory = WorkingMemory(capacity=7, ttl=3600) # 1 hour
self.long_term_memory = LongTermMemory() # Persistent
def encode_interaction(self, user_input: str, system_response: str, user_id: str):
# Sensory buffer - raw interaction
interaction = Interaction(user_input, system_response, timestamp=now())
self.sensory_buffer.add(interaction)
# Working memory - processed concepts
concepts = self.extract_concepts(user_input)
self.working_memory.activate(concept, strength=0.8)
# Long-term memory - consolidated patterns
if self.should_consolidate(user_id):
patterns = self.extract_patterns(user_id)
self.long_term_memory.store(user_id, patterns)
def retrieve_context(self, query: str, user_id: str) -> str:
sensory_context = self.sensory_buffer.search(query)
working_context = self.working_memory.get_active_concepts()
ltm_context = self.long_term_memory.retrieve(user_id, query)
return self.merge_contexts(sensory_context, working_context, ltm_context)
4.2 Attention-based Context Selection
Механизм attention для dynamic context assembly:
class AttentionBasedContextSelector:
def __init__(self, d_model=512):
self.attention = MultiHeadAttention(d_model, num_heads=8)
self.context_encoder = ContextEncoder(d_model)
def select_context(self, query: str, candidate_docs: List[Document], max_tokens: int) -> List[Document]:
query_emb = self.context_encoder.encode(query)
doc_embs = [self.context_encoder.encode(doc.content) for doc in candidate_docs]
# Attention mechanism для scoring relevance
attention_scores = self.attention(
# Greedy selection с учетом token budget
for idx in attention_scores.argsort(descending=True):
doc_tokens = count_tokens(doc.content)
if current_tokens + doc_tokens <= max_tokens:
ГЛАВА 5: PRODUCTION DEPLOYMENT И OPTIMIZATION
5.1 Latency Optimization Techniques
Production контекстные системы требуют sub-second response times:
self.vector_cache = RedisVectorCache()
self.embedding_service = BatchEmbeddingService() # Batch inference
self.async_preprocessor = AsyncTextPreprocessor()
async def process_query(self, query: str) -> str:
# Preprocessing pipeline с async operations
self.async_preprocessor.clean_text(query),
self.embedding_service.embed_async(query),
self.vector_cache.warm_cache(query) # Predictive caching
clean_query, query_embedding, _ = await asyncio.gather(*tasks)
# Parallel retrieval с connection pooling
self.vector_search_async(query_embedding),
self.keyword_search_async(clean_query),
self.hybrid_search_async(query_embedding, clean_query)
search_results = await asyncio.gather(*retrieval_tasks)
fused_results = self.fast_reciprocal_rank_fusion(search_results)
return await self.generate_response(query, fused_results)
5.2 Monitoring и Observability
Comprehensive monitoring для production систем:
self.metrics_collector = PrometheusMetrics()
self.trace_collector = JaegerTracer()
self.alert_manager = AlertManager()
@monitor_latency("retrieval_latency_seconds")
async def monitored_retrieval(self, query: str):
results = await self.retrieve_context(query)
self.metrics_collector.histogram(
self.calculate_relevance(query, results)
self.alert_manager.send_alert(f"Retrieval failed: {str(e)}")
latency = time.time() - start_time
self.metrics_collector.histogram("retrieval_latency_seconds", latency)
ГЛАВА 6: EVALUATION И QUALITY ASSURANCE
6.1 Automated Quality Metrics
Systematic evaluation framework:
class ContextQualityEvaluator:
self.retrieval_evaluator = RetrievalEvaluator()
self.generation_evaluator = GenerationEvaluator()
self.faithfulness_checker = FaithfulnessChecker()
def evaluate_system(self, test_queries: List[str], ground_truth: List[str]) -> Dict:
for query, expected in zip(test_queries, ground_truth):
retrieved_docs = self.system.retrieve(query)
'precision_at_k': self.retrieval_evaluator.precision_at_k(retrieved_docs, expected, k=5),
'recall_at_k': self.retrieval_evaluator.recall_at_k(retrieved_docs, expected, k=5),
'mrr': self.retrieval_evaluator.mean_reciprocal_rank(retrieved_docs, expected)
response = self.system.generate(query)
'bleu_score': self.generation_evaluator.bleu(response, expected),
'rouge_score': self.generation_evaluator.rouge(response, expected),
'bert_score': self.generation_evaluator.bert_score(response, expected)
metrics['faithfulness'] = self.faithfulness_checker.check(response, retrieved_docs)
return self.aggregate_metrics(metrics)
6.2 A/B Testing Framework
Continuous improvement через experimentation:
self.experiment_tracker = ExperimentTracker()
self.statistical_engine = StatisticalEngine()
def create_experiment(self, name: str, treatment_config: Dict, control_config: Dict):
treatment=ContextSystem(treatment_config),
control=ContextSystem(control_config),
success_metrics=['response_quality', 'user_satisfaction', 'task_completion']
self.experiment_tracker.register(experiment)
async def route_traffic(self, user_request: Request) -> Response:
# Determine experiment assignment
experiment = self.experiment_tracker.get_active_experiment(user_request.path)
if experiment and self.should_include_user(user_request.user_id, experiment):
variant = self.assign_variant(user_request.user_id, experiment)
system = experiment.treatment if variant == 'treatment' else experiment.control
response = await system.process(user_request)
self.experiment_tracker.log_interaction(
experiment.name, variant, user_request, response
ГЛАВА 7: ENTERPRISE INTEGRATION PATTERNS
7.1 Microservices Architecture
- VECTOR_DB_URL=http://vector-db:8080
- CACHE_URL=redis://cache:6379
image: weaviate/weaviate:latest
- vector_data:/var/lib/weaviate
image: preprocessing-worker:latest
- QUEUE_URL=redis://cache:6379
7.2 Security и Compliance
Data governance для enterprise deployment:
self.access_control = RoleBasedAccessControl()
self.audit_logger = AuditLogger()
self.data_classifier = DataClassifier()
self.encryption = FieldLevelEncryption()
@require_permission("context.read")
async def get_context(self, query: str, user: User) -> str:
sensitivity = self.data_classifier.classify(query)
if sensitivity == "PII" and not user.has_permission("pii.access"):
raise PermissionDenied("Insufficient permissions for PII access")
# Retrieve context с учетом user permissions
raw_context = await self.retrieve_context(query, user.access_level)
# Apply data masking if needed
masked_context = self.apply_data_masking(raw_context, user.clearance_level)
encrypted_context = self.encryption.encrypt_sensitive_fields(masked_context)
ЗАКЛЮЧЕНИЕ: ROADMAP РАЗВИТИЯ КОНТЕКСТ-ИНЖИНИРИНГА
Краткосрочная перспектива (6-12 месяцев):
- Multimodal context engines (text + images + audio)
- Real-time learning и adaptation
- Advanced reasoning capabilities через tool use
Среднесрочная перспектива (1-2 года):
Долгосрочная перспектива (2-5 лет):
- AGI-ready context architectures
- Quantum-enhanced information retrieval
- Federated learning для distributed knowledge
- Vector database administration
- Distributed systems architecture
- ML operations и model lifecycle management
- Information theory и cognitive science basics
Автор: Евгений Романов. Практик AI-автоматизации | Опыт внедрения: 100+ проектов. https://t.me/insighter13