πΠΠ΅ΠΏΠ»ΠΎΠΈΠΌ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΡ Π² LayerZero ΠΈ ΠΏΠ΅ΡΠ΅Π³ΠΎΠ½ΡΠ΅ΠΌ ΠΈΠ· Arbitrum Nova (Π³Π°ΠΉΠ΄ Π΄Π»Ρ ΠΈΠ·Π±ΡΠ°Π½Π½ΡΡ )
@cryptonik_spaceΠΠΎΠ΄ΠΏΠΈΡΠ°ΡΡΡΡ22 ΠΈΡΠ½Ρ
Π ΡΡΠΎΠΌ Π³Π°ΠΉΠ΄Π΅ Ρ Ρ
ΠΎΡΡ Π²Π°ΠΌ ΡΠ°ΡΡΠΊΠ°Π·Π°ΡΡ ΠΎ ΡΠΎΠΌ, ΠΊΠ°ΠΊ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΠ²ΠΎΠΈ ΡΠ°Π½ΡΡ Π½Π° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΆΠΈΡΠ½ΠΎΠ³ΠΎ Π΄ΡΠΎΠΏΠ° ΡΡΠ°Π·Ρ ΠΎΡ Π΄Π²ΡΡ
ΡΠΎΠΏΠΎΠ²ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ²: LayerZero ΠΈ Arbitrum Nova. ΠΡ ΠΏΡΠΎΠ΄Π΅Π»Π°Π΅ΠΌ Ρ Π²Π°ΠΌΠΈ ΡΠ°ΠΊΠΈΠ΅ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ, ΠΎ ΠΊΠΎΡΠΎΡΡΡ
Π½ΠΈΠΊΡΠΎ Π΅ΡΠ΅ Π½Π΅ ΡΠ°ΡΡΠΊΠ°Π·ΡΠ²Π°Π» Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΡΡΡΠΊΠΎΡΠ·ΡΡΠ½ΠΎΠΌ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ΅, Π½ΠΎ ΠΈ Π² Π°Π½Π³Π»ΠΎΡΠ·ΡΡΠ½ΠΎΠΌ:
- Π·Π°Π΄Π΅ΠΏΠ»ΠΎΠΈΠΌ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Π° LayerZero;
- ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅ΠΌ ΠΏΠ΅ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ NFT ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·Π½ΡΠΌΠΈ ΡΠ΅ΡΡΠΌΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ LayerZero, ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ ΠΏΠΎΠ²ΡΡΠΈΠ² ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠ΅ΠΉ Π² ΡΠ²ΠΎΠ΅ΠΌ ΠΊΠΎΡΠ΅Π»ΡΠΊΠ΅ ΠΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ² Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ Π΄ΡΠΎΠΏΠ°.
ΠΠΠΠ’Π Π ΠΠΠΠΠ Π½Π΅ Π΄Π°Π²Π°Π» ΡΠ°ΠΊΡΡ ΠΈΠ½ΡΡΡΡΠΊΡΠΈΡ ΠΈ Π½Π΅ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π» ΡΠ°ΠΊ Π½Π°Π³Π»ΡΠ΄Π½ΠΎ ΠΏΡΠΎΡΠ΅ΡΡ Π΄Π΅ΠΏΠ»ΠΎΡ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Π° LayerZero, Π΄Π° ΠΏΡΠΈ ΡΠΎΠΌ Π΅ΡΠ΅ ΠΈ Π² ΡΠ΅ΡΠΈ Arbitrum Nova! LayerZero Π½Π°ΡΠ°Π» ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΡΠ΅ΡΡ Arbitrum Nova ΡΠΎΠ²ΡΠ΅ΠΌ Π½Π΅Π΄Π°Π²Π½ΠΎ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΠ΅ΠΉΡΠ°Ρ Π»ΡΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΡΡΠΎΠ±Ρ ΠΏΡΠΎΡΠ²ΠΈΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π² ΡΡΠΈΡ
Π΄Π²ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠ°Ρ
.
Π§ΡΠΎ ΠΌΡ Π±ΡΠ΄Π΅ΠΌ Π΄Π΅Π»Π°ΡΡ?
ΠΠ»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π½Π΅ ΡΡΠ»ΠΎΠΆΠ½ΡΡΡ Π³Π°ΠΉΠ΄, Π±ΡΠ΄Π΅ΠΌ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π² Π΄Π²ΡΡ ΡΠ΅ΡΡΡ : BNB Chain ΠΈ Arbitrum Nova.
ΠΠ»Π°Π½ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ:
- ΠΠΎΠ±Π°Π²Π»ΡΠ΅ΠΌ Π² ΠΊΠΎΡΠ΅Π»Π΅ΠΊ (Π² ΠΌΠΎΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Metamask) ΡΠ΅ΡΠΈ BNB ΠΈ Arbitrum Nova;
- ΠΠΎΠΏΠΎΠ»Π½ΡΠ΅ΠΌ Π½Π°Ρ ΠΊΠΎΡΠ΅Π»Π΅ΠΊ Π² ΡΠ΅ΡΡΡ BNB ΠΈ Arbitrum Nova;
- ΠΠ°Π³ΡΡΠΆΠ°Π΅ΠΌ ΠΌΠ΅ΡΠ°Π΄Π°Π½Π½ΡΠ΅ Π΄Π»Ρ NFT Π² Π΄Π΅ΡΠ΅Π½ΡΡΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Ρ ΡΠ°Π½ΠΈΠ»ΠΈΡΠ΅ ΡΠ°ΠΉΠ»ΠΎΠ² IPFS;
- ΠΠ΅ΠΏΠ»ΠΎΠΈΠΌ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊΠΈ LayerZero Π² ΡΠ΅ΡΠΈ BNB ΠΈ Π² ΡΠ΅ΡΠΈ Arbitrum Nova;
- ΠΠΎΠ±Π°Π²Π»ΡΠ΅ΠΌ ΠΊΠΎΠ΄ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° Π² Π±Π»ΠΎΠΊΡΠ΅ΠΉΠ½ ΡΠΊΡΠΏΠ»ΠΎΡΠ΅ΡΡ BNB ΠΈ Arbitrum Nova.
- ΠΠΈΠ½ΡΠΈΠΌ NFT Π² ΡΠ΅ΡΠΈ Arbitrum Nova;
- ΠΠ΅ΡΠ΅ΡΡΠ»Π°Π΅ΠΌ NFT ΠΈΠ· ΡΠ΅ΡΠΈ Arbitrum Nova Π² ΡΠ΅ΡΡ BNB Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Π° LayerZero, ΡΡΠ½ΠΊΡΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π²ΡΡΡΠΎΠ΅Π½Ρ Π² ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡ Π½Π°ΡΠ΅ΠΉ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ.
ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ°: Π΄ΠΎΠ±Π°Π²Π»ΡΠ΅ΠΌ ΡΠ΅ΡΠΈ BNB ΠΈ Arbitrum Nova Π² ΠΊΠΎΡΠ΅Π»Π΅ΠΊ
ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ Π½Π° ΡΠ°ΠΉΡ ChainList, ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°Π΅ΠΌ ΠΊΠΎΡΠ΅Π»Π΅ΠΊ - ΡΠ²Π΅ΡΡ Ρ ΡΠΏΡΠ°Π²Π° ΠΊΠ½ΠΎΠΏΠΊΠ° Connect Wallet.
ΠΠ²ΠΎΠ΄ΠΈΠΌ Π² ΠΏΠΎΠΈΡΠΊΠ΅ Binance, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Add to Metamask Π² Π±Π»ΠΎΠΊΠ΅ Binance Smart Chain Mainnet.
Π§ΡΠΎΠ±Ρ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ ΡΡΠΎΠΈΠΌΠΎΡΡΡ Π½Π°ΡΠΈΡ ΡΡΠ°Π½Π·Π°ΠΊΡΠΈΠΉ Π² ΡΠ΅ΡΠΈ BNB, Π½ΡΠΆΠ½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡ RPC Π°Π΄ΡΠ΅Ρ Π² Π½Π°ΡΡΡΠΎΠΉΠΊΠ°Ρ ΠΊΠΎΡΠ΅Π»ΡΠΊΠ°. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΎΡΠΊΡΡΠ²Π°Π΅ΠΌ ΠΊΠΎΡΠ΅Π»Π΅ΠΊ, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π½Π° ΡΡΠΈ ΡΠΎΡΠΊΠΈ -> Expand view.
ΠΠ»ΠΈΠΊΠ°Π΅ΠΌ ΠΏΠΎ ΠΊΡΡΠ³Π»ΠΎΠΉ ΠΈΠΊΠΎΠ½ΠΊΠ΅ -> Settings.
Π ΡΠ°Π·Π΄Π΅Π»Π΅ Settings Π΄Π»Ρ ΡΠ΅ΡΠΈ BNB Chain ΠΏΡΠΎΠΏΠΈΡΡΠ²Π°Π΅ΠΌ New RPC URL.
https://rpc.ankr.com/bsc
Π’ΠΎΡΠ½ΠΎ ΡΠ°ΠΊ ΠΆΠ΅ Π΄ΠΎΠ±Π°Π²Π»ΡΠ΅ΠΌ ΡΠ΅ΡΡ Arbitrum Nova Π½Π° ΡΠ°ΠΉΡΠ΅ Chainlist. ΠΠ΅Π½ΡΡΡ RPC Π΄Π»Ρ Arbitrum Nova Π½Π΅ Π½ΡΠΆΠ½ΠΎ.
ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ°: ΠΏΠΎΠΏΠΎΠ»Π½ΡΠ΅ΠΌ ΠΊΠΎΡΠ΅Π»ΡΠΊΠΈ Π² Π½ΡΠΆΠ½ΡΡ ΡΠ΅ΡΡΡ
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠΏΠ»Π½ΠΈΡΡ ΠΊΠΎΡΠ΅Π»Π΅ΠΊ Π½Π°ΡΠΈΠ²Π½ΡΠΌΠΈ (Π³Π»Π°Π²Π½ΡΠΌΠΈ) ΠΌΠΎΠ½Π΅ΡΠ°ΠΌΠΈ Π² ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½Π½ΡΡ ΡΠ΅ΡΡΡ . ΠΠ»Ρ ΡΠ΅ΡΠΈ BNB Chain - ΡΡΠΎ BNB, ΠΌΠΎΠΆΠ½ΠΎ ΠΊΡΠΏΠΈΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π° Π»ΡΠ±ΠΎΠΉ Π±ΠΈΡΠΆΠ΅ (Binance, ByBit, Mexc ΠΈ Ρ.Π΄.), ΡΠΎΠ²Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ 0.08 BNB Π΄Π»Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π°ΠΊΠΊΠ°ΡΠ½ΡΠ°, ΡΡΠΎΠ±Ρ ΡΠΎΡΠ½ΠΎ Ρ Π²Π°ΡΠΈΠ»ΠΎ Π΄Π΅Π½Π΅Π³. ΠΠ»Ρ ΡΠ²ΠΎΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΡ Π°ΠΊΠΊΠ°ΡΠ½ΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·Π²Π°ΡΡ ΠΌΠ΅Π½ΡΡΠΈΠ΅ ΡΡΠΌΠΌΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠ°ΡΡΡΠ΅ΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΡ Ρ Π²Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈΡΡ.
ΠΠ»Ρ ΡΠ΅ΡΠΈ Arbitrum Nova Π½Π°ΡΠΈΠ²Π½Π°Ρ ΠΌΠΎΠ½Π΅ΡΠ° - ΡΡΠΎ ETH. Arbitrum Nova - ΡΡΠΎ ΡΠ΅ΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ (Layer 2) Π΄Π»Ρ ΡΠ΅ΡΠΈ Ethereum, ΠΏΠΎΡΡΠΎΠΌΡ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠΏΠΎΠ»Π½ΠΈΡΡ ΠΊΠΎΡΠ΅Π»Π΅ΠΊ ΠΌΠΎΠ½ΡΠ°ΠΌΠΈ ETH, Π½ΠΎ Π½ΡΠΆΠ½Ρ ΠΎΠ½ΠΈ Π½Π°ΠΌ Π² ΡΠ΅ΡΠΈ Arbitrum Nova. ΠΠ° ΠΌΠΎΠΌΠ΅Π½Ρ Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³Π°ΠΉΠ΄Π° ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π±ΠΈΡΠΆΠΈ Π½Π΅ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΡΠ΅ΡΡ Arbitrum Nova, ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΡ ΠΎΠ±ΠΌΠ΅Π½ΡΠ΅ΠΌ 0.04 BNB Π½Π° ETH Π² ΡΠ΅ΡΠΈ BNB, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ Π½Π° 1inch.
Π§ΡΠΎΠ±Ρ ΡΠ²ΠΈΠ΄Π΅ΡΡ ΠΌΠΎΠ½Π΅ΡΡ ETH Π² ΡΠ΅ΡΠΈ BNB Chain, Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΡΡ Π°Π΄ΡΠ΅Ρ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° Π² ΠΊΠΎΡΠ΅Π»ΡΠΊΠ΅. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΎΡΠΊΡΡΠ²Π°Π΅ΠΌ Metamask, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π²Π½ΠΈΠ·Ρ Import Tokens.
ΠΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π°Π΄ΡΠ΅Ρ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ°:
0x2170ed0880ac9a755fd29b2688956bd959f933f8
ΠΠΆΠΈΠ΄Π°Π΅ΠΌΡΡ ΠΏΠΎΠ΄Π³ΡΡΠ·ΠΊΠΈ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π² Π΄Π²ΡΡ Π΄ΡΡΠ³ΠΈΡ Π³ΡΠ°ΡΠ°Ρ , ΠΊΠ»ΠΈΠΊΠ°Π΅ΠΌ Add custom token.
Π’Π΅ΠΏΠ΅ΡΡ ΠΈΠ΄Π΅ΠΌ Π² Orbiter.finance - ΡΡΠΎ ΠΎΡΠ΅Π½Ρ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΠΌΠΎΡΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅ΡΡΠ»ΠΊΠΈ Π°ΠΊΡΠΈΠ²ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·Π½ΡΠΌΠΈ ΡΠ΅ΡΡΠΌΠΈ. ΠΠ·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΡΡ Ρ ΡΡΠΈΠΌ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΌΡ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ²ΡΡΠ°Π΅ΠΌ ΡΠ°Π½Ρ Π½Π° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π² Π±ΡΠ΄ΡΡΠ΅ΠΌ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΡΠΎΠΏΠ° ΠΎΡ ΡΠ°ΠΌΠΎΠ³ΠΎ Orbiter.finance, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Ρ Π½Π΅Π³ΠΎ Π΅ΡΠ΅ Π½Π΅Ρ ΡΠ²ΠΎΠ΅ΠΉ ΠΌΠΎΠ½Π΅ΡΡ. ΠΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌ Π²ΡΠ΅ ΡΠ²ΠΎΠΈ ΠΌΠΎΠ½Π΅ΡΡ ETH ΠΈΠ· ΡΠ΅ΡΠΈ BNB Π² ΡΠ΅ΡΡ Arbitrum Nova.
ΠΠ°Π³ΡΡΠΆΠ°Π΅ΠΌ ΠΌΠ΅ΡΠ°Π΄Π°Π½Π½ΡΠ΅ Π΄Π»Ρ NFT Π² Π΄Π΅ΡΠ΅Π½ΡΡΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Ρ ΡΠ°Π½ΠΈΠ»ΠΈΡΠ΅ ΡΠ°ΠΉΠ»ΠΎΠ² IPFS
ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ Π² ΡΠ΅ΡΠ²ΠΈΡ Pinata - ΠΏΠ»Π°ΡΡΠΎΡΠΌΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΎΠ²Π°ΡΡ Ρ IPFS Ρ ΡΠ°Π½ΠΈΠ»ΠΈΡΠ΅ΠΌ. Π Π΅Π³ΠΈΡΡΡΠΈΡΡΠ΅ΠΌΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠ½ΠΎΠΏΠΊΠΈ Start building ΠΈΠ»ΠΈ Π²Ρ ΠΎΠ΄ΠΈΠΌ Π² ΡΠ²ΠΎΠΉ Π°ΠΊΠΊΠ°ΡΠ½ΡΡ (ΠΊΠ½ΠΎΠΏΠΊΠ° Log in), Π΅ΡΠ»ΠΈ Π²Ρ ΡΠΆΠ΅ Π·Π°ΡΠ΅Π³ΠΈΡΡΡΠΈΡΠΎΠ²Π°Π½Ρ.
ΠΠ»ΠΈΠΊΠ°Π΅ΠΌ Add Files -> File, ΡΡΠΎΠ±Ρ Π·Π°Π³ΡΡΠ·ΠΈΡΡ ΡΠ²ΠΎΡ ΠΊΠ°ΡΡΠΈΠ½ΠΊΡ Π΄Π»Ρ Π±ΡΠ΄ΡΡΠ΅ΠΉ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ.
ΠΡΠ±ΠΈΡΠ°Π΅ΠΌ Π½ΡΠΆΠ½ΡΡ ΠΊΠ°ΡΡΠΈΠ½ΠΊΡ (ΠΊΠ½ΠΎΠΏΠΊΠ° Select file) -> Upload -> ΠΆΠ΄Π΅ΠΌ, ΠΏΠΎΠΊΠ° ΡΠ°ΠΉΠ» Π·Π°Π³ΡΡΠ·ΠΈΡΡΡ.
Π‘ΠΎΡ ΡΠ°Π½ΡΠ΅ΠΌ CID Π½Π°ΡΠ΅ΠΉ Π·Π°Π³ΡΡΠΆΠ΅Π½Π½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½ΠΊΠΈ, ΠΎΠ½ Π½Π°ΠΌ Π΅ΡΠ΅ ΠΏΠΎΠ½Π°Π΄ΠΎΠ±ΠΈΡΡΡ.
Π‘ΠΎΠ·Π΄Π°Π΅ΠΌ json ΡΠ°ΠΉΠ» ΠΈ Π²ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΡΡΠ΄Π° ΡΠΎΠ΅Π΄ΡΡΡΠΈΠΉ ΠΊΠΎΠ΄. Π§ΡΠΎΠ±Ρ ΡΠΎΠ·Π΄Π°ΡΡ json ΡΠ°ΠΉΠ» Ρ ΡΠ΅Π±Ρ Π½Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ΅, Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠΎΠ·Π΄Π°ΡΡ Π½ΠΎΠ²ΡΠΉ ΡΠ΅ΠΊΡΡΠΎΠ²ΡΠΉ ΡΠ°ΠΉΠ», Π²ΡΡΠ°Π²ΠΈΡΡ Π²Π½ΡΡΡΡ ΡΠ°ΠΉΠ»Π° ΠΊΠΎΠ΄, ΠΊΠΎΡΠΎΡΡΠΉ Ρ ΠΏΡΠΈΠ²Π΅Π» Π½ΠΈΠΆΠ΅ (ΡΠΎ ΡΠ²ΠΎΠΈΠΌΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌΠΈ), ΡΠΎΡ ΡΠ°Π½ΠΈΡΡ ΠΈ ΠΏΠΎΠΌΠ΅Π½ΡΡΡ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΉΠ»Π° Ρ ".txt" Π½Π° ".json". ΠΡΠ»ΠΈ Ρ Π²Π°Ρ Π½Π΅ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°ΡΡΡΡ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ ΡΠ°ΠΉΠ»ΠΎΠ², Π½Π΅ ΠΏΡΡΠ°ΠΉΡΠ΅ΡΡ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ ".json" Π² Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΡΠ°ΠΉΠ»Π°, ΠΏΠΎΡΠΌΠΎΡΡΠΈΡΠ΅ Π² Google, ΠΊΠ°ΠΊ Π²ΠΊΠ»ΡΡΠΈΡΡ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ ΡΠ°ΠΉΠ»ΠΎΠ² Π΄Π»Ρ Π²Π°ΡΠ΅ΠΉ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ.
ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡ 3 Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
- "At Least You Tried" - ΠΈΠΌΡ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ;
- "1000 NFTs travelling across different chains" - ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ;
- "ipfs://QmZNw7zqr74QwACtF771CGiSfCk6yvVtLGjNTWP9ZfXZFX" - Π·Π΄Π΅ΡΡ Π²ΠΌΠ΅ΡΡΠΎ QmZNw7zqr74QwACtF771CGiSfCk6yvVtLGjNTWP9ZfXZFX Π½ΡΠΆΠ½ΠΎ Π²ΡΡΠ°Π²ΠΈΡΡ CID ΡΠ²ΠΎΠ΅ΠΉ ΠΊΠ°ΡΡΠΈΠ½ΠΊΠΈ, ΠΊΠΎΡΠΎΡΡΡ Π²Ρ Π·Π°Π³ΡΡΠ·ΠΈΠ»ΠΈ Π½Π° Pinata.
{ "name": "At Least You Tried", "description": "1000 NFTs travelling across different chains", "image": "ipfs://QmZNw7zqr74QwACtF771CGiSfCk6yvVtLGjNTWP9ZfXZFX", "attributes": [] }
Π’Π΅ΠΏΠ΅ΡΡ Π·Π°Π³ΡΡΠΆΠ°Π΅ΠΌ ΡΡΠΎΡ json ΡΠ°ΠΉΠ» Π½Π° Pinata ΡΠΎΡΠ½ΠΎ ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ Π·Π°Π³ΡΡΠΆΠ°Π»ΠΈ ΠΊΠ°ΡΡΠΈΠ½ΠΊΡ.
Π‘ΠΎΡ Ρ ΡΠ°Π½ΡΠ΅ΠΌ CID ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ Π·Π°Π³ΡΡΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°ΠΉΠ»Π°, ΠΎΠ½ Π½Π°ΠΌ ΡΠΊΠΎΡΠΎ ΠΏΠΎΠ½Π°Π΄ΠΎΠ±ΠΈΡΡΡ.
ΠΠ΅ΠΏΠ»ΠΎΠΈΠΌ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ Π² ΡΠ΅ΡΠΈ BNB ΠΈ Π² ΡΠ΅ΡΠΈ Arbitrum Nova
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ ΠΊ Π³Π»Π°Π²Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠΎΠ³ΠΎ Π³Π°ΠΉΠ΄Π° - Π΄Π΅ΠΏΠ»ΠΎΠΉ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Ρ Π½ΠΈΠΌ Π² ΡΠ΅ΡΡΡ BNB ΠΈ Arbitrum Nova. ΠΡΠΊΡΡΠ²Π°Π΅ΠΌ ΡΠ°ΠΉΡ Remix - ΡΡΠΎ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΡ ΠΈ Π΄Π΅ΠΏΠ»ΠΎΡ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠΎΠ².
ΠΠ°ΠΆΠΈΠΌΠ°ΠΌ ΠΏΡΠ°Π²ΠΎΠΉ ΠΊΠ½ΠΎΠΏΠΊΠΎΠΉ ΠΌΡΡΠΈ Π½Π° ΠΏΠ°ΠΏΠΊΡ contracts -> New File
Π‘ΠΎΠ·Π΄Π°Π΅ΠΌ ΡΠ°ΠΉΠ» Ρ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ LayerZeroNFT.sol. ΠΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π² ΡΠ΅Π΄Π°ΠΊΡΠΎΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΊΠΎΠ΄. ΠΡΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΊΠΎΠ΄ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ Ρ Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊΠΎΠΉ ΠΎΡ LayerZero. Π― Π΅Π³ΠΎ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΠ» Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ Π³Π°ΠΉΠ΄Π°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π² Π»ΡΡΡΠΈΠ΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Ρ Π΄Π»Ρ Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠΎΠ² Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Π° LayerZero ΠΈ Π΄Π»Ρ Π½Π°ΡΠ΅Π³ΠΎ Ρ Π²Π°ΠΌΠΈ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠ΄Π΅Π»Π°Π» ΠΎΠ΄ΠΈΠ½ Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠ΅ΠΊΡΡΠΎΠ²ΡΠΉ ΡΠ°ΠΉΠ» Ρ ΠΊΠΎΠ΄ΠΎΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΡΠΌΠΎΠΆΠ΅ΠΌ Ρ Π»Π΅Π³ΠΊΠΎΡΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ Π΄Π΅ΠΏΠ»ΠΎΡ Π² Π»ΡΠ±ΡΡ EVM ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΡΡ ΡΠ΅ΡΡΡ , Π° Π·Π°ΡΠ΅ΠΌ (ΡΡΠΎ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½ΠΎ!) Ρ ΡΠ°ΠΊΠΎΠΉ ΠΆΠ΅ Π»Π΅Π³ΠΊΠΎΡΡΡΡ ΡΠΌΠΎΠΆΠ΅ΠΌ Π²Π΅ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ ΠΊΠΎΠ΄ ΡΡΠΎΠ³ΠΎ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° Π² Π±Π»ΠΎΠΊΡΠ΅ΠΉΠ½ ΡΠΊΡΠΏΠ»ΠΎΡΠ΅ΡΠ°Ρ , ΡΡΠΎΠ±Ρ Π΄ΡΡΠ³ΠΈΠ΅ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΠΈ ΠΌΠΎΠ³Π»ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΡΡΠ²ΠΎΠ²Π°ΡΡ Ρ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ Π½Π°ΡΠ΅ΠΉ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Ρ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ ΠΌΠΈΠ½ΡΠ° Π½ΠΎΠ²ΡΡ NFT.
//SPDX-License-Identifier: MIT // File: @openzeppelin/contracts/utils/math/SignedMath.sol // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } } // File: @openzeppelin/contracts/utils/math/Math.sol // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // β `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // β `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } } // File: @openzeppelin/contracts/utils/Strings.sol // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } } // File: @openzeppelin/contracts/utils/Address.sol // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // File: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } // File: @openzeppelin/contracts/security/ReentrancyGuard.sol // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } } // File: contracts/lz-contracts/util/ExcessivelySafeCall.sol pragma solidity >=0.7.6; library ExcessivelySafeCall { uint256 constant LOW_28_MASK = 0x00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff; /// @notice Use when you _really_ really _really_ don't trust the called /// contract. This prevents the called contract from causing reversion of /// the caller in as many ways as we can. /// @dev The main difference between this and a solidity low-level call is /// that we limit the number of bytes that the callee can cause to be /// copied to caller memory. This prevents stupid things like malicious /// contracts returning 10,000,000 bytes causing a local OOG when copying /// to memory. /// @param _target The address to call /// @param _gas The amount of gas to forward to the remote contract /// @param _maxCopy The maximum number of bytes of returndata to copy /// to memory. /// @param _calldata The data to send to the remote contract /// @return success and returndata, as `.call()`. Returndata is capped to /// `_maxCopy` bytes. function excessivelySafeCall( address _target, uint256 _gas, uint16 _maxCopy, bytes memory _calldata ) internal returns (bool, bytes memory) { // set up for assembly call uint256 _toCopy; bool _success; bytes memory _returnData = new bytes(_maxCopy); // dispatch message to recipient // by assembly calling "handle" function // we call via assembly to avoid memcopying a very large returndata // returned by a malicious contract assembly { _success := call( _gas, // gas _target, // recipient 0, // ether value add(_calldata, 0x20), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) // limit our copy to 256 bytes _toCopy := returndatasize() if gt(_toCopy, _maxCopy) { _toCopy := _maxCopy } // Store the length of the copied bytes mstore(_returnData, _toCopy) // copy the bytes from returndata[0:_toCopy] returndatacopy(add(_returnData, 0x20), 0, _toCopy) } return (_success, _returnData); } /// @notice Use when you _really_ really _really_ don't trust the called /// contract. This prevents the called contract from causing reversion of /// the caller in as many ways as we can. /// @dev The main difference between this and a solidity low-level call is /// that we limit the number of bytes that the callee can cause to be /// copied to caller memory. This prevents stupid things like malicious /// contracts returning 10,000,000 bytes causing a local OOG when copying /// to memory. /// @param _target The address to call /// @param _gas The amount of gas to forward to the remote contract /// @param _maxCopy The maximum number of bytes of returndata to copy /// to memory. /// @param _calldata The data to send to the remote contract /// @return success and returndata, as `.call()`. Returndata is capped to /// `_maxCopy` bytes. function excessivelySafeStaticCall( address _target, uint256 _gas, uint16 _maxCopy, bytes memory _calldata ) internal view returns (bool, bytes memory) { // set up for assembly call uint256 _toCopy; bool _success; bytes memory _returnData = new bytes(_maxCopy); // dispatch message to recipient // by assembly calling "handle" function // we call via assembly to avoid memcopying a very large returndata // returned by a malicious contract assembly { _success := staticcall( _gas, // gas _target, // recipient add(_calldata, 0x20), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) // limit our copy to 256 bytes _toCopy := returndatasize() if gt(_toCopy, _maxCopy) { _toCopy := _maxCopy } // Store the length of the copied bytes mstore(_returnData, _toCopy) // copy the bytes from returndata[0:_toCopy] returndatacopy(add(_returnData, 0x20), 0, _toCopy) } return (_success, _returnData); } /** * @notice Swaps function selectors in encoded contract calls * @dev Allows reuse of encoded calldata for functions with identical * argument types but different names. It simply swaps out the first 4 bytes * for the new selector. This function modifies memory in place, and should * only be used with caution. * @param _newSelector The new 4-byte selector * @param _buf The encoded contract args */ function swapSelector(bytes4 _newSelector, bytes memory _buf) internal pure { require(_buf.length >= 4); uint256 _mask = LOW_28_MASK; assembly { // load the first word of let _word := mload(add(_buf, 0x20)) // mask out the top 4 bytes // /x _word := and(_word, _mask) _word := or(_newSelector, _word) mstore(add(_buf, 0x20), _word) } } } // File: contracts/lz-contracts/util/BytesLib.sol /* * @title Solidity Bytes Arrays Utils * @author GonΓ§alo SΓ‘ <[email protected]> * * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity. * The library lets you concatenate, slice and type cast bytes arrays both in memory and storage. */ pragma solidity >=0.8.0 <0.9.0; library BytesLib { function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore(0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. )) } return tempBytes; } function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes.slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes.slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and( fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 ), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let mlengthmod := mod(mlength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { require(_length + 31 >= _length, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { require(_bytes.length >= _start + 20, "toAddress_outOfBounds"); address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) { require(_bytes.length >= _start + 1 , "toUint8_outOfBounds"); uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) { require(_bytes.length >= _start + 2, "toUint16_outOfBounds"); uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) { require(_bytes.length >= _start + 4, "toUint32_outOfBounds"); uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) { require(_bytes.length >= _start + 8, "toUint64_outOfBounds"); uint64 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x8), _start)) } return tempUint; } function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) { require(_bytes.length >= _start + 12, "toUint96_outOfBounds"); uint96 tempUint; assembly { tempUint := mload(add(add(_bytes, 0xc), _start)) } return tempUint; } function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) { require(_bytes.length >= _start + 16, "toUint128_outOfBounds"); uint128 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x10), _start)) } return tempUint; } function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { require(_bytes.length >= _start + 32, "toUint256_outOfBounds"); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) { require(_bytes.length >= _start + 32, "toBytes32_outOfBounds"); bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equalStorage( bytes storage _preBytes, bytes memory _postBytes ) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes.slot) // Decode the length of the stored array like in concatStorage(). let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) for {} eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } } // File: contracts/lz-contracts/interfaces/ILayerZeroUserApplicationConfig.sol pragma solidity >=0.5.0; interface ILayerZeroUserApplicationConfig { // @notice set the configuration of the LayerZero messaging library of the specified version // @param _version - messaging library version // @param _chainId - the chainId for the pending config change // @param _configType - type of configuration. every messaging library has its own convention. // @param _config - configuration in the bytes. can encode arbitrary content. function setConfig(uint16 _version, uint16 _chainId, uint _configType, bytes calldata _config) external; // @notice set the send() LayerZero messaging library version to _version // @param _version - new messaging library version function setSendVersion(uint16 _version) external; // @notice set the lzReceive() LayerZero messaging library version to _version // @param _version - new messaging library version function setReceiveVersion(uint16 _version) external; // @notice Only when the UA needs to resume the message flow in blocking mode and clear the stored payload // @param _srcChainId - the chainId of the source chain // @param _srcAddress - the contract address of the source contract at the source chain function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external; } // File: contracts/lz-contracts/interfaces/ILayerZeroEndpoint.sol pragma solidity >=0.5.0; interface ILayerZeroEndpoint is ILayerZeroUserApplicationConfig { // @notice send a LayerZero message to the specified address at a LayerZero endpoint. // @param _dstChainId - the destination chain identifier // @param _destination - the address on destination chain (in bytes). address length/format may vary by chains // @param _payload - a custom bytes payload to send to the destination contract // @param _refundAddress - if the source transaction is cheaper than the amount of value passed, refund the additional amount to this address // @param _zroPaymentAddress - the address of the ZRO token holder who would pay for the transaction // @param _adapterParams - parameters for custom functionality. e.g. receive airdropped native gas from the relayer on destination function send(uint16 _dstChainId, bytes calldata _destination, bytes calldata _payload, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable; // @notice used by the messaging library to publish verified payload // @param _srcChainId - the source chain identifier // @param _srcAddress - the source contract (as bytes) at the source chain // @param _dstAddress - the address on destination chain // @param _nonce - the unbound message ordering nonce // @param _gasLimit - the gas limit for external contract execution // @param _payload - verified payload to send to the destination contract function receivePayload(uint16 _srcChainId, bytes calldata _srcAddress, address _dstAddress, uint64 _nonce, uint _gasLimit, bytes calldata _payload) external; // @notice get the inboundNonce of a lzApp from a source chain which could be EVM or non-EVM chain // @param _srcChainId - the source chain identifier // @param _srcAddress - the source chain contract address function getInboundNonce(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (uint64); // @notice get the outboundNonce from this source chain which, consequently, is always an EVM // @param _srcAddress - the source chain contract address function getOutboundNonce(uint16 _dstChainId, address _srcAddress) external view returns (uint64); // @notice gets a quote in source native gas, for the amount that send() requires to pay for message delivery // @param _dstChainId - the destination chain identifier // @param _userApplication - the user app address on this EVM chain // @param _payload - the custom message to send over LayerZero // @param _payInZRO - if false, user app pays the protocol fee in native token // @param _adapterParam - parameters for the adapter service, e.g. send some dust native token to dstChain function estimateFees(uint16 _dstChainId, address _userApplication, bytes calldata _payload, bool _payInZRO, bytes calldata _adapterParam) external view returns (uint nativeFee, uint zroFee); // @notice get this Endpoint's immutable source identifier function getChainId() external view returns (uint16); // @notice the interface to retry failed message on this Endpoint destination // @param _srcChainId - the source chain identifier // @param _srcAddress - the source chain contract address // @param _payload - the payload to be retried function retryPayload(uint16 _srcChainId, bytes calldata _srcAddress, bytes calldata _payload) external; // @notice query if any STORED payload (message blocking) at the endpoint. // @param _srcChainId - the source chain identifier // @param _srcAddress - the source chain contract address function hasStoredPayload(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool); // @notice query if the _libraryAddress is valid for sending msgs. // @param _userApplication - the user app address on this EVM chain function getSendLibraryAddress(address _userApplication) external view returns (address); // @notice query if the _libraryAddress is valid for receiving msgs. // @param _userApplication - the user app address on this EVM chain function getReceiveLibraryAddress(address _userApplication) external view returns (address); // @notice query if the non-reentrancy guard for send() is on // @return true if the guard is on. false otherwise function isSendingPayload() external view returns (bool); // @notice query if the non-reentrancy guard for receive() is on // @return true if the guard is on. false otherwise function isReceivingPayload() external view returns (bool); // @notice get the configuration of the LayerZero messaging library of the specified version // @param _version - messaging library version // @param _chainId - the chainId for the pending config change // @param _userApplication - the contract address of the user application // @param _configType - type of configuration. every messaging library has its own convention. function getConfig(uint16 _version, uint16 _chainId, address _userApplication, uint _configType) external view returns (bytes memory); // @notice get the send() LayerZero messaging library version // @param _userApplication - the contract address of the user application function getSendVersion(address _userApplication) external view returns (uint16); // @notice get the lzReceive() LayerZero messaging library version // @param _userApplication - the contract address of the user application function getReceiveVersion(address _userApplication) external view returns (uint16); } // File: contracts/lz-contracts/interfaces/ILayerZeroReceiver.sol pragma solidity >=0.5.0; interface ILayerZeroReceiver { // @notice LayerZero endpoint will invoke this function to deliver the message on the destination // @param _srcChainId - the source endpoint identifier // @param _srcAddress - the source sending contract address from the source chain // @param _nonce - the ordered message nonce // @param _payload - the signed payload is the UA bytes has encoded to be sent function lzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) external; } // File: @openzeppelin/contracts/utils/Context.sol // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // File: @openzeppelin/contracts/access/Ownable.sol // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // File: contracts/lz-contracts/lzApp/LzApp.sol pragma solidity ^0.8.0; /* * a generic LzReceiver implementation */ abstract contract LzApp is Ownable, ILayerZeroReceiver, ILayerZeroUserApplicationConfig { using BytesLib for bytes; // ua can not send payload larger than this by default, but it can be changed by the ua owner uint constant public DEFAULT_PAYLOAD_SIZE_LIMIT = 10000; ILayerZeroEndpoint public immutable lzEndpoint; mapping(uint16 => bytes) public trustedRemoteLookup; mapping(uint16 => mapping(uint16 => uint)) public minDstGasLookup; mapping(uint16 => uint) public payloadSizeLimitLookup; address public precrime; event SetPrecrime(address precrime); event SetTrustedRemote(uint16 _remoteChainId, bytes _path); event SetTrustedRemoteAddress(uint16 _remoteChainId, bytes _remoteAddress); event SetMinDstGas(uint16 _dstChainId, uint16 _type, uint _minDstGas); constructor(address _endpoint) { lzEndpoint = ILayerZeroEndpoint(_endpoint); } function lzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) public virtual override { // lzReceive must be called by the endpoint for security require(_msgSender() == address(lzEndpoint), "LzApp: invalid endpoint caller"); bytes memory trustedRemote = trustedRemoteLookup[_srcChainId]; // if will still block the message pathway from (srcChainId, srcAddress). should not receive message from untrusted remote. require(_srcAddress.length == trustedRemote.length && trustedRemote.length > 0 && keccak256(_srcAddress) == keccak256(trustedRemote), "LzApp: invalid source sending contract"); _blockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload); } // abstract function - the default behaviour of LayerZero is blocking. See: NonblockingLzApp if you dont need to enforce ordered messaging function _blockingLzReceive(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload) internal virtual; function _lzSend(uint16 _dstChainId, bytes memory _payload, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams, uint _nativeFee) internal virtual { bytes memory trustedRemote = trustedRemoteLookup[_dstChainId]; require(trustedRemote.length != 0, "LzApp: destination chain is not a trusted source"); _checkPayloadSize(_dstChainId, _payload.length); lzEndpoint.send{value: _nativeFee}(_dstChainId, trustedRemote, _payload, _refundAddress, _zroPaymentAddress, _adapterParams); } function _checkGasLimit(uint16 _dstChainId, uint16 _type, bytes memory _adapterParams, uint _extraGas) internal view virtual { uint providedGasLimit = _getGasLimit(_adapterParams); uint minGasLimit = minDstGasLookup[_dstChainId][_type] + _extraGas; require(minGasLimit > 0, "LzApp: minGasLimit not set"); require(providedGasLimit >= minGasLimit, "LzApp: gas limit is too low"); } function _getGasLimit(bytes memory _adapterParams) internal pure virtual returns (uint gasLimit) { require(_adapterParams.length >= 34, "LzApp: invalid adapterParams"); assembly { gasLimit := mload(add(_adapterParams, 34)) } } function _checkPayloadSize(uint16 _dstChainId, uint _payloadSize) internal view virtual { uint payloadSizeLimit = payloadSizeLimitLookup[_dstChainId]; if (payloadSizeLimit == 0) { // use default if not set payloadSizeLimit = DEFAULT_PAYLOAD_SIZE_LIMIT; } require(_payloadSize <= payloadSizeLimit, "LzApp: payload size is too large"); } //---------------------------UserApplication config---------------------------------------- function getConfig(uint16 _version, uint16 _chainId, address, uint _configType) external view returns (bytes memory) { return lzEndpoint.getConfig(_version, _chainId, address(this), _configType); } // generic config for LayerZero user Application function setConfig(uint16 _version, uint16 _chainId, uint _configType, bytes calldata _config) external override onlyOwner { lzEndpoint.setConfig(_version, _chainId, _configType, _config); } function setSendVersion(uint16 _version) external override onlyOwner { lzEndpoint.setSendVersion(_version); } function setReceiveVersion(uint16 _version) external override onlyOwner { lzEndpoint.setReceiveVersion(_version); } function forceResumeReceive(uint16 _srcChainId, bytes calldata _srcAddress) external override onlyOwner { lzEndpoint.forceResumeReceive(_srcChainId, _srcAddress); } // _path = abi.encodePacked(remoteAddress, localAddress) // this function set the trusted path for the cross-chain communication function setTrustedRemote(uint16 _remoteChainId, bytes calldata _path) external onlyOwner { trustedRemoteLookup[_remoteChainId] = _path; emit SetTrustedRemote(_remoteChainId, _path); } function setTrustedRemoteAddress(uint16 _remoteChainId, bytes calldata _remoteAddress) external onlyOwner { trustedRemoteLookup[_remoteChainId] = abi.encodePacked(_remoteAddress, address(this)); emit SetTrustedRemoteAddress(_remoteChainId, _remoteAddress); } function getTrustedRemoteAddress(uint16 _remoteChainId) external view returns (bytes memory) { bytes memory path = trustedRemoteLookup[_remoteChainId]; require(path.length != 0, "LzApp: no trusted path record"); return path.slice(0, path.length - 20); // the last 20 bytes should be address(this) } function setPrecrime(address _precrime) external onlyOwner { precrime = _precrime; emit SetPrecrime(_precrime); } function setMinDstGas(uint16 _dstChainId, uint16 _packetType, uint _minGas) external onlyOwner { require(_minGas > 0, "LzApp: invalid minGas"); minDstGasLookup[_dstChainId][_packetType] = _minGas; emit SetMinDstGas(_dstChainId, _packetType, _minGas); } // if the size is 0, it means default size limit function setPayloadSizeLimit(uint16 _dstChainId, uint _size) external onlyOwner { payloadSizeLimitLookup[_dstChainId] = _size; } //--------------------------- VIEW FUNCTION ---------------------------------------- function isTrustedRemote(uint16 _srcChainId, bytes calldata _srcAddress) external view returns (bool) { bytes memory trustedSource = trustedRemoteLookup[_srcChainId]; return keccak256(trustedSource) == keccak256(_srcAddress); } } // File: contracts/lz-contracts/lzApp/NonblockingLzApp.sol pragma solidity ^0.8.0; /* * the default LayerZero messaging behaviour is blocking, i.e. any failed message will block the channel * this abstract class try-catch all fail messages and store locally for future retry. hence, non-blocking * NOTE: if the srcAddress is not configured properly, it will still block the message pathway from (srcChainId, srcAddress) */ abstract contract NonblockingLzApp is LzApp { using ExcessivelySafeCall for address; constructor(address _endpoint) LzApp(_endpoint) {} mapping(uint16 => mapping(bytes => mapping(uint64 => bytes32))) public failedMessages; event MessageFailed(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes _payload, bytes _reason); event RetryMessageSuccess(uint16 _srcChainId, bytes _srcAddress, uint64 _nonce, bytes32 _payloadHash); // overriding the virtual function in LzReceiver function _blockingLzReceive(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload) internal virtual override { (bool success, bytes memory reason) = address(this).excessivelySafeCall(gasleft(), 150, abi.encodeWithSelector(this.nonblockingLzReceive.selector, _srcChainId, _srcAddress, _nonce, _payload)); // try-catch all errors/exceptions if (!success) { _storeFailedMessage(_srcChainId, _srcAddress, _nonce, _payload, reason); } } function _storeFailedMessage(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload, bytes memory _reason) internal virtual { failedMessages[_srcChainId][_srcAddress][_nonce] = keccak256(_payload); emit MessageFailed(_srcChainId, _srcAddress, _nonce, _payload, _reason); } function nonblockingLzReceive(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) public virtual { // only internal transaction require(_msgSender() == address(this), "NonblockingLzApp: caller must be LzApp"); _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload); } //@notice override this function function _nonblockingLzReceive(uint16 _srcChainId, bytes memory _srcAddress, uint64 _nonce, bytes memory _payload) internal virtual; function retryMessage(uint16 _srcChainId, bytes calldata _srcAddress, uint64 _nonce, bytes calldata _payload) public payable virtual { // assert there is message to retry bytes32 payloadHash = failedMessages[_srcChainId][_srcAddress][_nonce]; require(payloadHash != bytes32(0), "NonblockingLzApp: no stored message"); require(keccak256(_payload) == payloadHash, "NonblockingLzApp: invalid payload"); // clear the stored message failedMessages[_srcChainId][_srcAddress][_nonce] = bytes32(0); // execute the message. revert if it fails again _nonblockingLzReceive(_srcChainId, _srcAddress, _nonce, _payload); emit RetryMessageSuccess(_srcChainId, _srcAddress, _nonce, payloadHash); } } // File: @openzeppelin/contracts/utils/introspection/IERC165.sol // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: @openzeppelin/contracts/utils/introspection/ERC165.sol // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } } // File: @openzeppelin/contracts/token/ERC721/IERC721.sol // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); } // File: @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); } // File: @openzeppelin/contracts/token/ERC721/ERC721.sol // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/ERC721.sol) pragma solidity ^0.8.0; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ contract ERC721 is Context, ERC165, IERC721, IERC721Metadata { using Address for address; using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to owner address mapping(uint256 => address) private _owners; // Mapping owner address to token count mapping(address => uint256) private _balances; // Mapping from token ID to approved address mapping(uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual override returns (uint256) { require(owner != address(0), "ERC721: address zero is not a valid owner"); return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { address owner = _ownerOf(tokenId); require(owner != address(0), "ERC721: invalid token ID"); return owner; } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { _requireMinted(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ERC721.ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require( _msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not token owner or approved for all" ); _approve(to, tokenId); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { _requireMinted(tokenId); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual override { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved"); _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual override { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: caller is not token owner or approved"); _safeTransfer(from, to, tokenId, data); } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual { _transfer(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), * and stop existing when they are burned (`_burn`). */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _ownerOf(tokenId) != address(0); } /** * @dev Returns whether `spender` is allowed to manage `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) { address owner = ERC721.ownerOf(tokenId); return (spender == owner || isApprovedForAll(owner, spender) || getApproved(tokenId) == spender); } /** * @dev Safely mints `tokenId` and transfers it to `to`. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal virtual { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual { _mint(to, tokenId); require( _checkOnERC721Received(address(0), to, tokenId, data), "ERC721: transfer to non ERC721Receiver implementer" ); } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal virtual { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _beforeTokenTransfer(address(0), to, tokenId, 1); // Check that tokenId was not minted by `_beforeTokenTransfer` hook require(!_exists(tokenId), "ERC721: token already minted"); unchecked { // Will not overflow unless all 2**256 token ids are minted to the same owner. // Given that tokens are minted one by one, it is impossible in practice that // this ever happens. Might change if we allow batch minting. // The ERC fails to describe this case. _balances[to] += 1; } _owners[tokenId] = to; emit Transfer(address(0), to, tokenId); _afterTokenTransfer(address(0), to, tokenId, 1); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal virtual { address owner = ERC721.ownerOf(tokenId); _beforeTokenTransfer(owner, address(0), tokenId, 1); // Update ownership in case tokenId was transferred by `_beforeTokenTransfer` hook owner = ERC721.ownerOf(tokenId); // Clear approvals delete _tokenApprovals[tokenId]; unchecked { // Cannot overflow, as that would require more tokens to be burned/transferred // out than the owner initially received through minting and transferring in. _balances[owner] -= 1; } delete _owners[tokenId]; emit Transfer(owner, address(0), tokenId); _afterTokenTransfer(owner, address(0), tokenId, 1); } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal virtual { require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner"); require(to != address(0), "ERC721: transfer to the zero address"); _beforeTokenTransfer(from, to, tokenId, 1); // Check that tokenId was not transferred by `_beforeTokenTransfer` hook require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer from incorrect owner"); // Clear approvals from the previous owner delete _tokenApprovals[tokenId]; unchecked { // `_balances[from]` cannot overflow for the same reason as described in `_burn`: // `from`'s balance is the number of token held, which is at least one before the current // transfer. // `_balances[to]` could overflow in the conditions described in `_mint`. That would require // all 2**256 token ids to be minted, which in practice is impossible. _balances[from] -= 1; _balances[to] += 1; } _owners[tokenId] = to; emit Transfer(from, to, tokenId); _afterTokenTransfer(from, to, tokenId, 1); } /** * @dev Approve `to` to operate on `tokenId` * * Emits an {Approval} event. */ function _approve(address to, uint256 tokenId) internal virtual { _tokenApprovals[tokenId] = to; emit Approval(ERC721.ownerOf(tokenId), to, tokenId); } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll(address owner, address operator, bool approved) internal virtual { require(owner != operator, "ERC721: approve to caller"); _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` has not been minted yet. */ function _requireMinted(uint256 tokenId) internal view virtual { require(_exists(tokenId), "ERC721: invalid token ID"); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received( address from, address to, uint256 tokenId, bytes memory data ) private returns (bool) { if (to.isContract()) { try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) { return retval == IERC721Receiver.onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert("ERC721: transfer to non ERC721Receiver implementer"); } else { /// @solidity memory-safe-assembly assembly { revert(add(32, reason), mload(reason)) } } } } else { return true; } } /** * @dev Hook that is called before any token transfer. This includes minting and burning. If {ERC721Consecutive} is * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s tokens will be transferred to `to`. * - When `from` is zero, the tokens will be minted for `to`. * - When `to` is zero, ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * - `batchSize` is non-zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {} /** * @dev Hook that is called after any token transfer. This includes minting and burning. If {ERC721Consecutive} is * used, the hook may be called as part of a consecutive (batch) mint, as indicated by `batchSize` greater than 1. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s tokens were transferred to `to`. * - When `from` is zero, the tokens were minted for `to`. * - When `to` is zero, ``from``'s tokens were burned. * - `from` and `to` are never both zero. * - `batchSize` is non-zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 firstTokenId, uint256 batchSize) internal virtual {} /** * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override. * * WARNING: Anyone calling this MUST ensure that the balances remain consistent with the ownership. The invariant * being that for any address `a` the value returned by `balanceOf(a)` must be equal to the number of tokens such * that `ownerOf(tokenId)` is `a`. */ // solhint-disable-next-line func-name-mixedcase function __unsafe_increaseBalance(address account, uint256 amount) internal { _balances[account] += amount; } } // File: contracts/lz-contracts/token/onft/IONFT721Core.sol pragma solidity >=0.5.0; /** * @dev Interface of the ONFT Core standard */ interface IONFT721Core is IERC165 { /** * @dev Emitted when `_tokenIds[]` are moved from the `_sender` to (`_dstChainId`, `_toAddress`) * `_nonce` is the outbound nonce from */ event SendToChain(uint16 indexed _dstChainId, address indexed _from, bytes indexed _toAddress, uint[] _tokenIds); event ReceiveFromChain(uint16 indexed _srcChainId, bytes indexed _srcAddress, address indexed _toAddress, uint[] _tokenIds); event SetMinGasToTransferAndStore(uint256 _minGasToTransferAndStore); event SetDstChainIdToTransferGas(uint16 _dstChainId, uint256 _dstChainIdToTransferGas); event SetDstChainIdToBatchLimit(uint16 _dstChainId, uint256 _dstChainIdToBatchLimit); /** * @dev Emitted when `_payload` was received from lz, but not enough gas to deliver all tokenIds */ event CreditStored(bytes32 _hashedPayload, bytes _payload); /** * @dev Emitted when `_hashedPayload` has been completely delivered */ event CreditCleared(bytes32 _hashedPayload); /** * @dev send token `_tokenId` to (`_dstChainId`, `_toAddress`) from `_from` * `_toAddress` can be any size depending on the `dstChainId`. * `_zroPaymentAddress` set to address(0x0) if not paying in ZRO (LayerZero Token) * `_adapterParams` is a flexible bytes array to indicate messaging adapter services */ function sendFrom(address _from, uint16 _dstChainId, bytes calldata _toAddress, uint _tokenId, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable; /** * @dev send tokens `_tokenIds[]` to (`_dstChainId`, `_toAddress`) from `_from` * `_toAddress` can be any size depending on the `dstChainId`. * `_zroPaymentAddress` set to address(0x0) if not paying in ZRO (LayerZero Token) * `_adapterParams` is a flexible bytes array to indicate messaging adapter services */ function sendBatchFrom(address _from, uint16 _dstChainId, bytes calldata _toAddress, uint[] calldata _tokenIds, address payable _refundAddress, address _zroPaymentAddress, bytes calldata _adapterParams) external payable; /** * @dev estimate send token `_tokenId` to (`_dstChainId`, `_toAddress`) * _dstChainId - L0 defined chain id to send tokens too * _toAddress - dynamic bytes array which contains the address to whom you are sending tokens to on the dstChain * _tokenId - token Id to transfer * _useZro - indicates to use zro to pay L0 fees * _adapterParams - flexible bytes array to indicate messaging adapter services in L0 */ function estimateSendFee(uint16 _dstChainId, bytes calldata _toAddress, uint _tokenId, bool _useZro, bytes calldata _adapterParams) external view returns (uint nativeFee, uint zroFee); /** * @dev estimate send token `_tokenId` to (`_dstChainId`, `_toAddress`) * _dstChainId - L0 defined chain id to send tokens too * _toAddress - dynamic bytes array which contains the address to whom you are sending tokens to on the dstChain * _tokenIds[] - token Ids to transfer * _useZro - indicates to use zro to pay L0 fees * _adapterParams - flexible bytes array to indicate messaging adapter services in L0 */ function estimateSendBatchFee(uint16 _dstChainId, bytes calldata _toAddress, uint[] calldata _tokenIds, bool _useZro, bytes calldata _adapterParams) external view returns (uint nativeFee, uint zroFee); } // File: contracts/lz-contracts/token/onft/ONFT721Core.sol pragma solidity ^0.8.0; abstract contract ONFT721Core is NonblockingLzApp, ERC165, ReentrancyGuard, IONFT721Core { uint16 public constant FUNCTION_TYPE_SEND = 1; struct StoredCredit { uint16 srcChainId; address toAddress; uint256 index; // which index of the tokenIds remain bool creditsRemain; } uint256 public minGasToTransferAndStore; // min amount of gas required to transfer, and also store the payload mapping(uint16 => uint256) public dstChainIdToBatchLimit; mapping(uint16 => uint256) public dstChainIdToTransferGas; // per transfer amount of gas required to mint/transfer on the dst mapping(bytes32 => StoredCredit) public storedCredits; constructor(uint256 _minGasToTransferAndStore, address _lzEndpoint) NonblockingLzApp(_lzEndpoint) { require(_minGasToTransferAndStore > 0, "minGasToTransferAndStore must be > 0"); minGasToTransferAndStore = _minGasToTransferAndStore; } function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IONFT721Core).interfaceId || super.supportsInterface(interfaceId); } function estimateSendFee(uint16 _dstChainId, bytes memory _toAddress, uint _tokenId, bool _useZro, bytes memory _adapterParams) public view virtual override returns (uint nativeFee, uint zroFee) { return estimateSendBatchFee(_dstChainId, _toAddress, _toSingletonArray(_tokenId), _useZro, _adapterParams); } function estimateSendBatchFee(uint16 _dstChainId, bytes memory _toAddress, uint[] memory _tokenIds, bool _useZro, bytes memory _adapterParams) public view virtual override returns (uint nativeFee, uint zroFee) { bytes memory payload = abi.encode(_toAddress, _tokenIds); return lzEndpoint.estimateFees(_dstChainId, address(this), payload, _useZro, _adapterParams); } function sendFrom(address _from, uint16 _dstChainId, bytes memory _toAddress, uint _tokenId, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams) public payable virtual override { _send(_from, _dstChainId, _toAddress, _toSingletonArray(_tokenId), _refundAddress, _zroPaymentAddress, _adapterParams); } function sendBatchFrom(address _from, uint16 _dstChainId, bytes memory _toAddress, uint[] memory _tokenIds, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams) public payable virtual override { _send(_from, _dstChainId, _toAddress, _tokenIds, _refundAddress, _zroPaymentAddress, _adapterParams); } function _send(address _from, uint16 _dstChainId, bytes memory _toAddress, uint[] memory _tokenIds, address payable _refundAddress, address _zroPaymentAddress, bytes memory _adapterParams) internal virtual { // allow 1 by default require(_tokenIds.length > 0, "tokenIds[] is empty"); require(_tokenIds.length == 1 || _tokenIds.length <= dstChainIdToBatchLimit[_dstChainId], "batch size exceeds dst batch limit"); for (uint i = 0; i < _tokenIds.length; i++) { _debitFrom(_from, _dstChainId, _toAddress, _tokenIds[i]); } bytes memory payload = abi.encode(_toAddress, _tokenIds); _checkGasLimit(_dstChainId, FUNCTION_TYPE_SEND, _adapterParams, dstChainIdToTransferGas[_dstChainId] * _tokenIds.length); _lzSend(_dstChainId, payload, _refundAddress, _zroPaymentAddress, _adapterParams, msg.value); emit SendToChain(_dstChainId, _from, _toAddress, _tokenIds); } function _nonblockingLzReceive( uint16 _srcChainId, bytes memory _srcAddress, uint64, /*_nonce*/ bytes memory _payload ) internal virtual override { // decode and load the toAddress (bytes memory toAddressBytes, uint[] memory tokenIds) = abi.decode(_payload, (bytes, uint[])); address toAddress; assembly { toAddress := mload(add(toAddressBytes, 20)) } uint nextIndex = _creditTill(_srcChainId, toAddress, 0, tokenIds); if (nextIndex < tokenIds.length) { // not enough gas to complete transfers, store to be cleared in another tx bytes32 hashedPayload = keccak256(_payload); storedCredits[hashedPayload] = StoredCredit(_srcChainId, toAddress, nextIndex, true); emit CreditStored(hashedPayload, _payload); } emit ReceiveFromChain(_srcChainId, _srcAddress, toAddress, tokenIds); } // Public function for anyone to clear and deliver the remaining batch sent tokenIds function clearCredits(bytes memory _payload) external virtual nonReentrant { bytes32 hashedPayload = keccak256(_payload); require(storedCredits[hashedPayload].creditsRemain, "no credits stored"); (, uint[] memory tokenIds) = abi.decode(_payload, (bytes, uint[])); uint nextIndex = _creditTill(storedCredits[hashedPayload].srcChainId, storedCredits[hashedPayload].toAddress, storedCredits[hashedPayload].index, tokenIds); require(nextIndex > storedCredits[hashedPayload].index, "not enough gas to process credit transfer"); if (nextIndex == tokenIds.length) { // cleared the credits, delete the element delete storedCredits[hashedPayload]; emit CreditCleared(hashedPayload); } else { // store the next index to mint storedCredits[hashedPayload] = StoredCredit(storedCredits[hashedPayload].srcChainId, storedCredits[hashedPayload].toAddress, nextIndex, true); } } // When a srcChain has the ability to transfer more chainIds in a single tx than the dst can do. // Needs the ability to iterate and stop if the minGasToTransferAndStore is not met function _creditTill(uint16 _srcChainId, address _toAddress, uint _startIndex, uint[] memory _tokenIds) internal returns (uint256){ uint i = _startIndex; while (i < _tokenIds.length) { // if not enough gas to process, store this index for next loop if (gasleft() < minGasToTransferAndStore) break; _creditTo(_srcChainId, _toAddress, _tokenIds[i]); i++; } // indicates the next index to send of tokenIds, // if i == tokenIds.length, we are finished return i; } function setMinGasToTransferAndStore(uint256 _minGasToTransferAndStore) external onlyOwner { require(_minGasToTransferAndStore > 0, "minGasToTransferAndStore must be > 0"); minGasToTransferAndStore = _minGasToTransferAndStore; emit SetMinGasToTransferAndStore(_minGasToTransferAndStore); } // ensures enough gas in adapter params to handle batch transfer gas amounts on the dst function setDstChainIdToTransferGas(uint16 _dstChainId, uint256 _dstChainIdToTransferGas) external onlyOwner { require(_dstChainIdToTransferGas > 0, "dstChainIdToTransferGas must be > 0"); dstChainIdToTransferGas[_dstChainId] = _dstChainIdToTransferGas; emit SetDstChainIdToTransferGas(_dstChainId, _dstChainIdToTransferGas); } // limit on src the amount of tokens to batch send function setDstChainIdToBatchLimit(uint16 _dstChainId, uint256 _dstChainIdToBatchLimit) external onlyOwner { require(_dstChainIdToBatchLimit > 0, "dstChainIdToBatchLimit must be > 0"); dstChainIdToBatchLimit[_dstChainId] = _dstChainIdToBatchLimit; emit SetDstChainIdToBatchLimit(_dstChainId, _dstChainIdToBatchLimit); } function _debitFrom(address _from, uint16 _dstChainId, bytes memory _toAddress, uint _tokenId) internal virtual; function _creditTo(uint16 _srcChainId, address _toAddress, uint _tokenId) internal virtual; function _toSingletonArray(uint element) internal pure returns (uint[] memory) { uint[] memory array = new uint[](1); array[0] = element; return array; } } // File: contracts/lz-contracts/token/onft/IONFT721.sol pragma solidity >=0.5.0; /** * @dev Interface of the ONFT standard */ interface IONFT721 is IONFT721Core, IERC721 { } // File: contracts/lz-contracts/token/onft/ONFT721.sol pragma solidity ^0.8.0; // NOTE: this ONFT contract has no public minting logic. // must implement your own minting logic in child classes contract ONFT721 is ONFT721Core, ERC721, IONFT721 { constructor(string memory _name, string memory _symbol, uint256 _minGasToTransfer, address _lzEndpoint) ERC721(_name, _symbol) ONFT721Core(_minGasToTransfer, _lzEndpoint) {} function supportsInterface(bytes4 interfaceId) public view virtual override(ONFT721Core, ERC721, IERC165) returns (bool) { return interfaceId == type(IONFT721).interfaceId || super.supportsInterface(interfaceId); } function _debitFrom(address _from, uint16, bytes memory, uint _tokenId) internal virtual override { require(_isApprovedOrOwner(_msgSender(), _tokenId), "ONFT721: send caller is not owner nor approved"); require(ERC721.ownerOf(_tokenId) == _from, "ONFT721: send from incorrect owner"); _transfer(_from, address(this), _tokenId); } function _creditTo(uint16, address _toAddress, uint _tokenId) internal virtual override { require(!_exists(_tokenId) || (_exists(_tokenId) && ERC721.ownerOf(_tokenId) == address(this))); if (!_exists(_tokenId)) { _safeMint(_toAddress, _tokenId); } else { _transfer(address(this), _toAddress, _tokenId); } } } // File: contracts/lz-contracts/token/onft/extension/UniversalONFT721.sol pragma solidity ^0.8.0; /// @title Interface of the UniversalONFT standard contract UniversalONFT721 is ONFT721 { uint public nextMintId; uint public maxMintId; /// @notice Constructor for the UniversalONFT /// @param _name the name of the token /// @param _symbol the token symbol /// @param _layerZeroEndpoint handles message transmission across chains /// @param _startMintId the starting mint number on this chain /// @param _endMintId the max number of mints on this chain constructor(string memory _name, string memory _symbol, uint256 _minGasToTransfer, address _layerZeroEndpoint, uint _startMintId, uint _endMintId) ONFT721(_name, _symbol, _minGasToTransfer, _layerZeroEndpoint) { nextMintId = _startMintId; maxMintId = _endMintId; } /// @notice Mint your ONFT function mint() external payable { require(nextMintId <= maxMintId, "UniversalONFT721: max mint limit reached"); uint newId = nextMintId; nextMintId++; _safeMint(msg.sender, newId); } } // File: contracts/lz-contracts/examples/ExampleUniversalONFT721.sol pragma solidity ^0.8.0; //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Q&Rdq6qKDWQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@QRXt<~'` ._^cag@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@k*, `!jQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@U; ,}Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@g; 'w@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@i ~Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@L '*Ij}i~ :@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@k 7@@@@@@@D =@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@! k@@@@@@@@ `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; k@@@@@@@@ `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; k@@@@@@@@ `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@t^^^^^^^^^^^^;~'` k@@@@@@@@ `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@QUz+:'` k@@@@@@@@ '@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@K?' k@@@@@@@@ X@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@b; k@@@@@@@@ f@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Q; k@@@@@@@@ =Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Q' k@@@@@@@@ `;5Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@7 k@@@@@@@@ ,~|ZQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; k@@@@@@@@ `',;><<<<<<<<<<<?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; k@@@@@@@@ `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; k@@@@@@@@ `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@! k@@@@@@@@ `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@f y@@@@@@@Q ~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; +obDdhL` `Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@? :Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@a' `L@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@k; ,YQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@QP>' `;}Q@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Rj7^,` `';iZWQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Q#RdqAAKDWQ@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ /// @title A LayerZero UniversalONFT example /// @notice You can use this to mint ONFT and send nftIds across chain. /// Each contract deployed to a chain should carefully set a `_startMintIndex` and a `_maxMint` /// value to set a range of allowed mintable nftIds (so that no two chains can mint the same id!) contract LayerZeroNFT is UniversalONFT721 { string public baseTokenURI; constructor( string memory _baseTokenURI, uint256 _minGasToStore, address _layerZeroEndpoint, uint _startMintId, uint _endMintId ) UniversalONFT721("Layer Zero NFT", "LZNFT", _minGasToStore, _layerZeroEndpoint, _startMintId, _endMintId) { setBaseURI(_baseTokenURI); } /// @notice Set the baseTokenURI /// @param _baseTokenURI to set function setBaseURI(string memory _baseTokenURI) public onlyOwner { baseTokenURI = _baseTokenURI; } /// @notice Get the base URI function _baseURI() internal view override returns (string memory) { return baseTokenURI; } function tokenURI(uint256 _nftId) public view override(ERC721) returns (string memory) { require(_exists(_nftId), "Not exist"); string memory currentBaseURI = _baseURI(); return currentBaseURI; } }
ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ Π² ΡΡΠ΅ΡΠΈΠΉ ΡΠ°Π·Π΄Π΅Π» ΡΠ»Π΅Π²Π°, ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΠΌ Advanced Configurations, Π·Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³Π°Π»ΠΎΡΠΊΡ Enable optimization.
ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Compile LayerZeroNFT.sol, ΠΎΡΠΈΠ±ΠΎΠΊ Π±ΡΡΡ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ.
ΠΠΎ ΠΆΠ΅Π»Π°Π½ΠΈΡ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Ρ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΈ ΡΠΈΠΌΠ²ΠΎΠ» NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΊΠΎΠ»ΡΡΠ΅ ΡΠ°ΠΉΠ» Ρ ΠΊΠΎΠ΄ΠΎΠΌ Π²Π½ΠΈΠ· Π΄ΠΎ ΡΡΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΊΠΎΠ΄Π°. ΠΠΎΠΆΠ΅ΡΠ΅ Π²ΠΏΠΈΡΠ°ΡΡ ΡΠ²ΠΎΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΠΌΠ΅ΡΡΠΎ ΠΈΠΌΠ΅ΡΡΠΈΡ ΡΡ.
"Layer Zero NFT" - Π½Π°Π·Π²Π°Π½ΠΈΠ΅ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ "LZNFT" - ΡΠΈΠΌΠ²ΠΎΠ» NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ
ΠΠ°ΡΠ΅ΠΌ ΡΠ½ΠΎΠ²ΠΎ Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Compile LayerZeroNFT.sol.
ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ Π² ΡΠ΅ΡΠ²Π΅ΡΡΡΠΉ ΡΠ°Π·Π΄Π΅Π» ΡΠ»Π΅Π²Π°, Π² ΡΠΏΠΈΡΠΊΠ΅ ENVIRONMENT Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ Injected Provider -> ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ°Π΅ΠΌ Metamask Π² ΡΠ΅ΡΠΈ BNB.
Π ΡΠΏΠΈΡΠΊΠ΅ CONTRACT Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ LayerZeroNFT.
Π Π°Π·Π²ΠΎΡΠ°ΡΠΈΠ²Π°Π΅ΠΌ Π²ΠΊΠ»Π°Π΄ΠΊΡ Deploy ΠΈ Π²ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎ Π½ΡΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ QmZLaTwZU8KpkBLJMe5WwQKPv2zKv4FYUvYpcNgxW49wa2 Π½Π° CID json ΡΠ°ΠΉΠ»Π°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ Π·Π°Π³ΡΡΠ·ΠΈΠ»ΠΈ ΡΠ°Π½Π΅Π΅ Π½Π° Pinata.
_BASETOKENURI: ipfs://QmZLaTwZU8KpkBLJMe5WwQKPv2zKv4FYUvYpcNgxW49wa2 _MINGASTOSTORE: 35000 _LAYERZEROENDPOINT: 0x3c2269811836af69497E5F486A85D7316753cf62 _STARTMINTID: 1 _ENDMINTID: 500
ΠΠ°ΠΆΠΈΠΌΠ°Π΅ΠΌ transact, ΠΏΠΎΠ΄ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π² ΠΊΠΎΡΠ΅Π»ΡΠΊΠ΅.
Π ΠΊΠΎΡΠ΅Π»ΡΠΊΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ ΠΏΠ»Π°ΡΡ Π·Π° Π³Π°Π· Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠ½ΠΎΠΏΠΊΠΈ Edit.
Π’Π΅ΠΏΠ΅ΡΡ ΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΠ΅ΡΡ Π² ΠΊΠΎΡΠ΅Π»ΡΠΊΠ΅ Π½Π° Arbitrum Nova ΠΈ Π΅ΡΠ΅ ΡΠ°Π· Π΄Π΅ΠΏΠ»ΠΎΠΈΠΌ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡ, Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ Π΄ΡΡΠ³ΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ. _MINGASTOSTORE ΠΈ _BASETOKENURI ΠΎΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΡΠ°ΠΊΠΈΠΌΠΈ ΠΆΠ΅, ΠΊΠ°ΠΊΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ Π² ΡΠ΅ΡΠΈ BNB, ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΌΠ΅Π½ΡΠ΅ΠΌ Π½Π° ΡΠ»ΡΠ΄ΡΡΡΠΈΠ΅, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡ transact.
_BASETOKENURI: ipfs://QmZLaTwZU8KpkBLJMe5WwQKPv2zKv4FYUvYpcNgxW49wa2 _MINGASTOSTORE: 35000 _LAYERZEROENDPOINT: 0x4EE2F9B7cf3A68966c370F3eb2C16613d3235245 _STARTMINTID: 501 _ENDMINTID: 1000
ΠΠ΅ΡΠ΅Π΄ ΠΏΠΎΠ΄ΠΏΠΈΡΠ°Π½ΠΈΠ΅ΠΌ Π² ΠΊΠΎΡΠ΅Π»ΡΠΊΠ΅ Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π½Π° Site suggested, ΡΡΠΎΠ±Ρ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡ ΡΠ΅Π½Ρ Π³Π°Π·Π°.
Π‘ΡΠ°Π²ΠΈΠΌ ΠΏΠΎ ΠΌΠ°ΡΠΊΠ΅ΡΡ.
ΠΠΎΠ±Π°Π²Π»ΡΠ΅ΠΌ ΠΊΠΎΠ΄ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° Π² Π±Π»ΠΎΠΊΡΠ΅ΠΉΠ½ ΡΠΊΡΠΏΠ»ΠΎΡΠ΅ΡΡ BNB Chain ΠΈ Arbitrum Nova
ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ Π² BscScan, Π²ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π°Π΄ΡΠ΅Ρ ΡΠ²ΠΎΠ΅Π³ΠΎ ΠΊΠΎΡΠ΅Π»ΡΠΊΠ°, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΡ Π΄Π΅ΠΏΠ»ΠΎΠΈΠ»ΠΈ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΡ. ΠΠ»ΠΈΠΊΠ°Π΅ΠΌ Π½Π° ΠΏΠΎΡΠ»Π΅Π΄Π½ΡΡ ΡΡΠ°Π½Π·Π°ΠΊΠΈΡ Contract Creation.
ΠΠ»ΠΈΠΊΠ°Π΅ΠΌ Π½Π° Π°Π΄ΡΠ΅Ρ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ°.
ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ Π²ΠΎ Π²ΠΊΠ»Π°Π΄ΠΊΡ Contract, Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Verify and Publish.
Π£ΠΊΠ°Π·ΡΠ²Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ, ΠΊΠ»Π°ΠΊΠ°Π΅ΠΌ Continue. ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π²Π°ΡΠ° Π²Π΅ΡΡΠΈΡ ΠΊΠΎΠΌΠΏΠΈΠ»Π΅ΡΠ° Π² Remix ΠΎΡΠ»ΠΈΡΠ΅ΡΡΡ ΠΎΡ ΠΌΠΎΠ΅ΠΉ (Ρ ΠΌΠ΅Π½Ρ v0.8.18), Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΎΡΡΠ΅ΡΡ Π²Π΅ΡΡΠΈΡ ΠΊΠΎΠΌΠΏΠΈΠ»Π΅ΡΠ° Π² Remix Π² ΡΡΠ΅ΡΡΠ΅ΠΉ Π²ΠΊΠ»Π°Π΄ΠΊΠ΅.
ΠΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΠΊΠΎΠ΄ Π½Π°ΡΠ΅Π³ΠΎ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ°, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠΎΠΏΠΈΡΠΎΠ²Π°ΡΡ ΠΏΡΡΠΌΠΎ ΠΈΠ· Remix. Optimization ΠΏΠ΅ΡΠ΅ΠΊΠ»ΡΡΠ°Π΅ΠΌ Π½Π° Yes. ΠΠΎΠ»ΡΡΠ΅ Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅ΠΌ, ΠΊΠ»ΠΈΠΊΠ°Π΅ΠΌ Verify and Publish.
ΠΡΠ»ΠΈ Ρ Π²Π°Ρ ΠΏΠΎΡΠ²ΠΈΠ»Π°ΡΡ ΡΠ°ΠΊΠ°Ρ ΡΡΡΠ°Π½ΠΈΡΠ°, Π·Π°Π½ΡΠΈΡ Π²Ρ Π²ΡΠ΅ ΡΠ΄Π΅Π»Π°Π»ΠΈ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ. ΠΠ°ΠΆΠΈΠΌΠ°Π΅ΠΌ Π½Π° Π°Π΄ΡΠ΅Ρ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° - ΡΠΎΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΡ ΡΠΊΠΎΠ±ΠΊΠ°Ρ .
ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ Π²ΠΎ Π²ΠΊΠ»Π°Π΄ΠΊΡ Write Contract, ΠΊΠΎΠ½Π½Π΅ΠΊΡΠΈΠΌ ΠΊΠΎΡΠ΅Π»Π΅ΠΊ.
Π ΡΠ°Π·Π΄Π΅Π»Π΅ setTrustedRemoteAddress ΡΠΊΠ°Π·ΡΠ²Π°Π΅ΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ:
- _remoteChainId - 175;
- _remoteAddress - Π°Π΄ΡΠ΅Ρ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° Π½Π°ΡΠ΅ΠΉ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ Π² ΡΠ΅ΡΠΈ Arbitrum Nova, Π²Ρ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°ΠΉΡΠΈ ΠΏΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ Ρ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΠΌΡ Π½Π°Ρ ΠΎΠ΄ΠΈΠ»ΠΈ Π°Π΄ΡΠ΅Ρ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° Π² BscScan, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ°ΠΉΡ Nova.ArbiScan.
ΠΠ»ΠΈΠΊΠ°Π΅ΠΌ Write ΠΈ ΠΏΠΎΠ΄ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π² ΠΊΠΎΡΠ΅Π»ΡΠΊΠ΅.
ΠΠΎΠ΄Π½ΠΈΠΌΠ°Π΅ΠΌΡΡ Π²ΡΡΠ΅ Π² ΡΠ°Π·Π΄Π΅Π» mint, Π²ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ 0 (ΡΡΠΌΠΌΠ°, ΠΊΠΎΡΠΎΡΡΡ ΠΌΡ Ρ ΠΎΡΠΈΠΌ Π·Π°ΠΏΠ»Π°ΡΠΈΡΡ Π·Π° ΠΌΠΈΠ½Ρ 1 NFT), Π½Π°ΠΆΠΈΠΌΠ°Π΅ΠΌ Write.
Π£ΡΠ°! ΠΡ ΡΠΌΠΈΠ½ΡΠΈΠ»ΠΈ 1 NFT Π² ΡΠ΅ΡΠΈ BNB Chain. Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΠ΄Π΅Π»Π°ΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΆΠ΅ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΈΠΈ Π² ΡΠ΅ΡΠΈ Arbitrum Nova, Π½ΠΎ Ρ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ.
ΠΠ΅ΡΠΈΡΠΈΡΠΈΡΡΠ΅ΠΌ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ Π² Arbitrum Nova Π½Π° Nova.ArbiScan. ΠΠ΅Π»Π°Π΅ΠΌ Π²ΡΠ΅ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎ ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ Π΄Π΅Π»Π°Π»ΠΈ Π² BscScan. ΠΠ°ΡΠ΅ΠΌ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π²ΡΠ·Π²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ setTrustedRemoteAddress Π² ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ΅ Π² ΡΠ΅ΡΠΈ Arbitrum Nova.
Π£ΠΊΠ°Π·ΡΠ²Π°Π΅ΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ:
- _remoteChainId - 102;
- _remoteAddress - Π°Π΄ΡΠ΅Ρ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ° Π½Π°ΡΠ΅ΠΉ NFT ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ Π² ΡΠ΅ΡΠΈ BNB.
ΠΠ΅ΡΠ΅Π΄ ΠΏΠΎΠ΄ΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π² ΠΊΠΎΡΠ΅Π»ΡΠΊΠ΅ Π½Π΅ ΡΠ°Π±ΡΠ΄ΡΡΠ΅ Π½Π°ΠΆΠ°ΡΡ Π½Π° Site suggested ΠΈ Π²ΡΠ±ΡΠ°ΡΡ Market, ΡΡΠΎΠ±Ρ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ ΠΏΠ»Π°ΡΡ Π·Π° Π³Π°Π·. Π ΡΠ΅ΡΠΈ Arbitrum Nova Π»ΡΡΡΠ΅ ΡΠ°ΠΊ ΠΏΡΠΎΠ΄Π΅Π»ΡΠ²Π°ΡΡ ΠΏΠ΅ΡΠ΅Π΄ ΠΊΠ°ΠΆΠ΄ΡΠΌ ΠΏΠΎΠ΄ΠΏΠΈΡΠ°Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π½Π·Π°ΠΊΡΠΈΠΈ.
ΠΠ΅ΠΏΠ΅ΡΡ, ΡΠΎΡΠ½ΠΎ ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² ΡΠ΅ΡΠΈ BNB, ΠΌΠΈΠ½ΡΠΈΠΌ NFT Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ mint.
ΠΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌ NFT ΠΈΠ· ΡΠ΅ΡΠΈ Arbitrum Nova Π² ΡΠ΅ΡΡ BNB
ΠΠ΅ΡΠ΅Π΄ ΠΎΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π½Π°ΡΠ΅ΠΉ NFT ΠΈΠ· ΡΠ΅ΡΠΈ Arbitrum Nova Π² ΡΠ΅ΡΡ BNB Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠ°Π·ΠΌΠ΅Ρ Π³Π°Π·Π° Π΄Π»Ρ ΡΡΠ°Π½Π·Π°ΠΊΡΠΈΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π° ΡΠΎΠΉ ΠΆΠ΅ ΡΡΡΠ°Π½ΠΈΡΠ΅ Π½Π°ΡΠ΅Π³ΠΎ ΡΠΌΠ°ΡΡ ΠΊΠΎΠ½ΡΡΠ°ΠΊΡΠ°, Π³Π΄Π΅ ΠΌΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠΌΠΈΠ½ΡΠΈΠ»ΠΈ NFT, Π² Nova.ArbiScan Π² ΡΠ°Π·Π΄Π΅Π»Π΅ Write Contract Π½Π°Ρ ΠΎΠ΄ΠΈΠΌ ΡΡΠ½ΠΊΡΠΈΡ setMinDstGas. ΠΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
_dstChainId: 102 _packetType: 1 _minGas: 200000
ΠΠ»Ρ Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡΠ±ΠΎΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ Ρ ΡΠ°ΡΠΏΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ²:
- _dstChainId - ID Π±Π»ΠΎΠΊΡΠ΅ΠΉΠ½Π°, 102 - ΡΡΠΎ ΡΠ΅ΡΡ BNB Chain, ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π’Π£Π’;
- _packetType - ΡΠΈΠΏ ΡΡΠ°Π½Π·Π°ΠΊΡΠΈΠΈ, Π² Π½Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ 1 ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ ΠΎΡΠΏΡΠ°Π²ΠΊΡ;
- _minGas - ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠ°Π·ΠΌΠ΅Ρ Π³Π°Π·Π° Π΄Π»Ρ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΡΡΠ°Π½Π·Π°ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΌ Π±Π»ΠΎΠΊΡΠ΅ΠΉΠ½Π΅.
ΠΠ°ΠΆΠΈΠΌΠ°Π΅ΠΌ Write, ΡΡΠΎΠ±Ρ ΠΈΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΡ.
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΠΌΠΎΠ΅ Π³Π»Π°Π²Π½ΠΎΠ΅ - ΠΎΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌ NFT ΠΈΠ· ΡΠ΅ΡΠΈ Arbitrum Nova Π² ΡΠ΅ΡΡ BNB. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΌ Π½ΡΠΆΠ½Π° ΡΡΠ½ΠΊΡΠΈΡ sendFrom. ΠΠΏΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
sendFrom: 0.0006 _from: ΡΠΊΠ°Π·ΡΠ²Π°Π΅ΠΌ ΡΠ²ΠΎΠΉ Π°Π΄ΡΠ΅Ρ ΠΈΠ· ΠΠ΅ΡΠ°ΠΌΠ°ΡΠΊΠ° _dstChainId: 102 _toAddress: ΡΠ²ΠΎΠΉ Π°Π΄ΡΠ΅Ρ ΠΈΠ· ΠΌΠ΅ΡΠ°ΠΌΠ°ΡΠΊΠ° _tokenId: 501 _refundAddress: ΡΠ²ΠΎΠΉ Π°Π΄ΡΠ΅Ρ ΠΈΠ· ΠΠ΅ΡΠ°ΠΌΠ°ΡΠΊΠ° _zroPaymentAddress: 0x0000000000000000000000000000000000000000 _adapterParams: 0x00010000000000000000000000000000000000000000000000000000000000030d40
Π§ΡΠΎ ΠΎΠ·Π½Π°ΡΠ°ΡΡ ΡΡΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ:
- sendFrom - ΡΠ°Π·ΠΌΠ΅Ρ ETH, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ Ρ ΠΎΡΠΈΠΌ ΠΎΡΠΏΡΠ°Π²ΠΈΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΏΠΎΠ΄ΠΏΠΈΡΠ°Π½ΠΈΡ ΡΡΠ°Π½Π·Π°ΠΊΡΠΈΠΈ, Π½ΡΠΆΠ½ΠΎ ΠΎΡΠΏΡΠ°Π²ΠΈΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΡΠ΅Π΄ΡΡΠ², ΡΡΠΎΠ±Ρ Ρ Π²Π°ΡΠΈΠ»ΠΎ Π½Π° ΠΎΠΏΠ»Π°ΡΡ Π³Π°Π·Π° Π² ΡΠ΅ΡΠΈ, ΠΊΡΠ΄Π° ΠΏΡΠΈΠ΄Π΅Ρ NFT. ΠΡΠΈ Π½Π°ΡΠ΅ΠΌ ΡΠ΅ΠΊΡΡΠ΅ΠΌ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌ ΡΠ°Π·ΠΌΠ΅ΡΠ΅ Π³Π°Π·Π° Π² 200000 ΡΡΠ΅Π΄ΡΡΠ² Π² ΡΠ°Π·ΠΌΠ΅ΡΠ΅ 0.0006 ETH Π΄ΠΎΠ»ΠΆΠ½ΠΎ Ρ Π²Π°ΡΠΈΡΡ.
- _from - Π°Π΄ΡΠ΅Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠΏΡΠ°Π²Π»ΡΠ΅Ρ NFT, Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠΎ ΠΌΡ, Π½ΠΎ Π΅ΡΠ»ΠΈ Π±Ρ Π½Π°ΠΌ ΠΊΠ°ΠΊΠΎΠΉ-ΡΠΎ Π΄Π΅ΠΏΠΆΠ°ΡΠ΅Π»Ρ Π΄Π°Π» ΠΏΡΠ°Π²ΠΎ ΠΎΡΠΏΡΠ°Π²Π»ΡΡΡ ΠΊΠ°ΠΊΡΡ-Π»ΠΈΠ±ΠΎ ΠΈΠ· ΡΠ²ΠΎΠΈΡ NFT ΠΈΠ· ΡΡΠΎΠΉ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠΈ, ΠΌΡ ΠΌΠΎΠ³Π»ΠΈ Π±Ρ Π²ΠΏΠΈΡΠ°ΡΡ Π°Π΄ΡΠ΅Ρ ΡΡΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°;
- _dstChainId - ID ΡΠ΅ΠΏΠΎΡΠΊΠΈ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΡ;
- _toAddress - Π°Π΄ΡΠ΅Ρ, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΎΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌ NFT;
- _tokenId - ID Π½Π°ΡΠ΅ΠΉ NFT, ΠΊΠΎΡΠΎΡΡΡ ΠΌΡ Ρ ΠΎΡΠΈΠΌ ΠΎΡΠΏΡΠ°Π²ΠΈΡΡ, Ρ Π½Π°Ρ ΠΏΠΎ ΡΡΡΠΈ Π΅ΡΡΡ ΠΎΠ΄Π½Π° ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΡ Π² Π΄Π²ΡΡ Π±Π»ΠΎΠΊΡΠ΅ΠΉΠ½Π°Ρ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ 1000, Π² ΡΠ΅ΡΠΈ BNB ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠΈΠ½ΡΠΈΡΡ Π½ΠΎΠΌΠ΅ΡΠ° 1-500, Π² ΡΠ΅ΡΠΈ Arbitrum Nova ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠΈΠ½ΡΠΈΡΡ Π½ΠΎΠΌΠ΅ΡΠ° 500-1000;
- _refundAddress - Π°Π΄ΡΠ΅Ρ, Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ Π½ΡΠΆΠ½ΠΎ ΠΎΡΠΏΡΠ°Π²ΠΈΡΡ Π½Π΅ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΡΠ΅Π΄ΡΡΠ²Π°;
- _zroPaymentAddress - ΡΡΠΎΡ Π°Π΄ΡΠ΅Ρ Π½Π°ΠΌ Π½ΡΠΆΠ΅Π½ Π±ΡΠ» Π±Ρ, Π΅ΡΠ»ΠΈ Π±Ρ ΠΌΡ ΠΏΠ»Π°ΡΠΈΠ»ΠΈ Π² ΠΌΠΎΠ½Π΅ΡΠ°Ρ ZRO (ΠΌΠΎΠ½Π΅ΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠ° LayerZero), ΡΠΎ Π΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΡΠΈΠΊΠΈ LayerZero ΡΠΆΠ΅ ΠΎΡΠΊΡΡΡΠΎ Π²ΡΡΠ°Π²Π»ΡΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π΄Π»Ρ Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ ΡΠΎΠΊΠ΅Π½Π°;
- _adapterParams - ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ, Π² ΠΊΠΎΡΠΎΡΡΠΉΡ
ΡΠΊΠ°Π·Π°Π½Π° Π²Π΅ΡΡΠΈΡ ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Π° ΠΈ ΡΠ°Π·ΠΌΠ΅Ρ ΠΏΠ»Π°ΡΡ Π·Π° Π³Π°Π·
0x00010000000000000000000000000000000000000000000000000000000000030d40 ->
0001 - ΡΡΠΎ Π²Π΅ΡΡΠΈΡ 1
30d40 - ΡΡΠΎ 200,000 Π² ΡΠ΅ΡΠ½Π°Π΄ΡΠ°ΡΠ΅ΡΠΈΡΠ½ΠΎΠΌ ΡΠΎΡΠΌΠ°ΡΠ΅.
ΠΠ°ΠΆΠΈΠΌΠ°Π΅ΠΌ Write ΠΈ ΠΏΠΎΠ΄ΠΏΠΈΡΡΠ²Π°Π΅ΠΌ Π² ΠΊΠΎΡΠ΅Π»ΡΠΊΠ΅.
ΠΡ ΠΎΡΠΏΡΠ°Π²ΠΈΠ»ΠΈ Π½Π°ΡΡ NFT ΠΈΠ· ΡΠ΅ΡΠΈ Arbitrum Nova Π² ΡΠ΅ΡΡ BNB Chain Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Π° LayerZero! ΠΡΡΠ»Π΅ΠΆΠΈΠ²Π°ΡΡ ΡΡΠ°ΡΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π½Π·Π°ΠΊΡΠΈΠΈ Π² ΠΏΡΠΎΠΊΠΎΠ»Π΅ LayerZero ΠΌΠΎΠΆΠ½ΠΎ Π² LayerZero Scan. ΠΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²ΡΡΠ°Π²ΠΈΡΡ Π² ΠΏΠΎΠΈΡΠΊ Ρ ΡΡ ΡΡΠ°Π½Π·Π°ΠΊΡΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΡ ΠΎΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌ NFT. ΠΠΎΠ³Π΄Π° ΠΏΠΎΡΠ²ΠΈΡΡΡ ΡΡΠ°ΡΡΡ DELIVERED, ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΠΎΠ·Π½Π°ΡΠ°ΡΡ, ΡΡΠΎ Π½Π°ΡΠ° NFT Π΄ΠΎΠ±ΡΠ°Π»Π°ΡΡ Π΄ΠΎ ΠΏΡΠ½ΠΊΡΠ° Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠ° ΡΡΠΎΠΌ Ρ ΠΌΠ΅Π½Ρ Π²ΡΠ΅! ΠΡΠ»ΠΈ Π²Ρ ΡΠΏΡΠ°Π²ΠΈΠ»ΠΈΡΡ Ρ Π΄Π°Π½Π½ΡΠΌ Π³Π°ΠΉΠ΄ΠΎΠΌ, ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²Π°Ρ ΠΏΠΎΠ·Π΄ΡΠ°Π²ΠΈΡΡ. ΠΡΠΎ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΌΠΎΠ³ΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΠ΄Π΅Π»ΠΈΡΡ Π²Π°ΡΠΈ ΠΊΠΎΡΠ΅Π»ΡΠΊΠΈ ΠΈΠ· ΠΎΠ±ΡΠ΅ΠΉ ΠΌΠ°ΡΡΡ Π² LayerZero ΠΈ Π² Arbitrum Nova.
πΠΡΠ»ΠΈ Π²Π°ΠΌ ΠΏΠΎΠ½ΡΠ°Π²ΠΈΠ»ΡΡ Π³Π°ΠΉΠ΄ ΠΈ Π²Ρ Ρ ΠΎΡΠΈΡΠ΅ ΠΌΠ΅Π½Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°ΡΡ, ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΎΡΠΏΡΠ°Π²ΠΈΡΡ Π΄ΠΎΠ½Π°Ρ Π½Π° ΠΌΠΎΠΉ ΠΊΠΎΡΠ΅Π»Π΅ΠΊ:
0xaA039Fd15cd82E743aF7A14019a824Af00D3F691
ΠΠΎΠΆΠ΅ΡΠ΅ ΠΎΡΠΏΡΠ°Π²Π»ΡΡΡ Π»ΡΠ±ΡΠ΅ ΠΌΠΎΠ½Π΅ΡΡ ΠΈ ΡΠΎΠΊΠ΅Π½Ρ Π² ΡΠ΅ΡΡΡ Ethereum, BNB Chain, Polygon, Arbitrum, Arbitrum Nova, Avalanche ΠΈ Ρ.Π΄..
Π’Π°ΠΊΠΆΠ΅ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°ΡΡ ΠΌΠ΅Π½Ρ Π΄ΠΎΠ½Π°ΡΠΎΠΌ Π·Π΄Π΅ΡΡ Π½Π° Teletype.
ΠΡΠ΅ΠΌ Π΄ΠΎΠ½Π°ΡΠ΅ΡΠ°ΠΌ Π±ΡΠ΄Ρ ΠΊΡΠ°ΠΉΠ½Π΅ ΠΏΡΠΈΠ·Π½Π°ΡΠ΅Π»Π΅Π½!
Π‘ΡΠ°Π²ΡΡΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΠ΅ΡΡ ΡΠ°ΡΡΡΡ ΠΊΠΎΠΌΠ°Π½Π΄Ρ Cryptonik π
π’Π’Π΅Π»Π΅Π³ΡΠ°ΠΌ ΠΊΠ°Π½Π°Π» https://t.me/cryptonik_space π¬ Youtube ΠΊΠ°Π½Π°Π» https://www.youtube.com/@cryptonik_space π¬ Π’Π΅Π»Π΅Π³ΡΠ°ΠΌ ΡΠ°Ρ https://t.me/cryptonik_space_chat
@cryptonik_space22 ΠΈΡΠ½Ρ, 22:42