September 11, 2022

КОСМОС ЧТО ЭТО?????

КОСМИЧЕСКОЕ ПРОСТРАНСТВО

есть два разных, но похожих определения:

КОСМИ́ЧЕСКОЕ ПРОСТРА́НСТВО, космос (от греч. ϰόσμος – упорядоченность, красота; мироздание, включая Землю; редко – небесный свод; в сов. терминологии синоним англ. outer space – внепланетное пространство), пространство, простирающееся в основном за пределами атмосферы Земли.

Косми́ческое простра́нство, ко́смос (др.-греч. κόσμος — «упорядоченность», «порядок») — относительно пустые участки Вселенной, которые лежат вне границ атмосфер небесных тел. Космос не является абсолютно пустым пространством: в нём есть, хотя и с очень низкой плотностью, межзвёздное вещество (преимущественно молекулы водорода), кислород в малых количествах (остаток после взрыва звезды), космические лучи и электромагнитное излучение, а также гипотетическая тёмная материя.

Размер всей Вселенной неизвестен, и она может быть бесконечной по протяженности. Согласно теории Большого взрыва, очень ранняя Вселенная была чрезвычайно горячей и плотной около 13,8 миллиардов лет назад, которая быстро расширялась. Примерно 380 000 лет спустя Вселенная достаточно остыла, чтобы позволить протонам и электронам объединяться и образовывать водород — так называемая эпоха рекомбинации

Когда это произошло, материя и энергия разделились, позволив фотонам свободно перемещаться в постоянно расширяющемся пространстве.Материя, оставшаяся после первоначального расширения, с тех пор подверглась гравитационному коллапсу, создав звезды, галактики и другие астрономические объекты, оставив после себя глубокий вакуум, который образует то, что сейчас называется космическим пространством. Поскольку скорость света конечна, эта теория также ограничивает размер непосредственно наблюдаемой Вселенной

От границ атмосферы до пределов Солнечной системы

Межпланетное пространство – область Вселенной, ограниченная орбитой самой дальней планеты, вращающейся вокруг звезды. Понятно, что из многочисленных звездных систем, известных ученым сегодня, наиболее хорошо изучена наша собственная. В центре нашей системы расположено Солнце. Именно его влияние обуславливает свойства межпланетного пространства. Вокруг него вращаются восемь планет: четыре имеют твердую каменистую поверхность, а четыре – являются газовыми гигантами. На наибольшем расстоянии от Солнца находится Нептун, ближе всего к нему Меркурий.

Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон

плутон перестал считаться планетой солнечной системы из-за своего размера

Плутон считался девятой планетой нашей звездной системы с момента открытия и до 2006 года. Лишить Плутон статуса планеты было решено после обнаружения нескольких небесных тел, сравнимых с ним по размерам — Цереры и Эриды. То есть, эта планета находится по среди планет гигантов

Границы на пути в космос

  • 0,5 км — до этой высоты проживает 80 % человеческого населения мира.
  • 2 км — до этой высоты проживает 99 % населения мира.
  • 2—3 км — начало проявления недомоганий (горная болезнь) у неакклиматизированных людей.
  • 4,7 км — МФА требует дополнительного снабжения кислородом для пилотов и пассажиров.
  • 5,0 км — 50 % от атмосферного давления на уровне моря (см. Стандартная атмосфера).
  • 5,1 км — самый высокорасположенный постоянный населённый пункт город Ла-Ринконада (Перу).
  • 5,5 км — пройдена половина массы атмосферы(гора Эльбрус). Яркость неба в зените 646—1230 кд/м².
  • 6 км — граница обитания человека (временные посёлки шерпов в Гималаях), граница жизни в горах.
  • до 6,5 км — снеговая линия в Тибете и Андах. Во всех прочих местах она располагается ниже, в Антарктиде до 0 м над уровнем моря.
  • 6,6 км — самая высоко расположенная каменная постройка (гора Льюльяильяко, Южная Америка).
  • 7 км — граница приспособляемости человека к длительному пребыванию в горах.
  • 7,99 км — граница однородной атмосферы при 0 °C и одинаковой плотности от уровня моря. Яркость неба снижается пропорционально уменьшению высоты однородной атмосферы на данном уровне.
  • 8,2 км — граница смерти без кислородной маски: даже здоровый и тренированный человек может в любой момент потерять сознание и погибнуть. Яркость неба в зените 440—893 кд/м².
  • 8,848 км — высочайшая точка Земли гора Эверест — предел доступности пешком в космос.
  • 9 км — предел приспособляемости к кратковременному дыханию атмосферным воздухом.
  • 10—12 км — граница между тропосферой и стратосферой (тропопауза) в средних широтах. Также это граница подъёма обычных облаков, дальше простирается разрежённый и сухой воздух.
  • 12 км — дыхание воздухом эквивалентно пребыванию в космосе (одинаковое время потери сознания ~10—20 с); предел кратковременного дыхания чистым кислородом без дополнительного давления.
    Потолок дозвуковых пассажирских авиалайнеров. Яркость неба в зените 280—880 кд/м².
  • 15—16 км — дыхание чистым кислородом эквивалентно пребыванию в космосе.
    Над головой осталось 10 % массы атмосферы. Небо становится тёмно-фиолетовым (10—15 км).
  • 16 км — при нахождении в высотном костюме в кабине нужно дополнительное давление.
  • 18,9—19,35 — линия Армстронганачало космоса для организма человека: закипание воды при температуре человеческого тела. Внутренние жидкости ещё не кипят, так как тело генерирует достаточно внутреннего давления, но могут начать кипеть слюна и слёзы с образованием пены, набухать глаза.
  • 19 км — яркость тёмно-фиолетового неба в зените 5 % от яркости чистого синего неба на уровне моря (74,3—75 свечей против 1490 кд/м²), днём могут быть видны самые яркие звёзды и планеты.
  • 20 км — зона от 20 до 100 км по ряду параметров считается «ближним космосом». На этих высотах вид из иллюминатора почти как в околоземном космосе, но спутники здесь не летают, небо тёмно-фиолетовое и чёрно-лиловое, хотя и выглядит чёрным по контрасту с яркими Солнцем и поверхностью.
    Потолок тепловых аэростатов-монгольфьеров (19 811 м).
  • 20—30 км — начало верхней атмосферы.
  • 20—22 км — верхняя граница биосферы: предел подъёма ветрами живых спор и бактерий.
  • 20—25 км — озоновый слой в средних широтах. Яркость неба днём в 20—40 раз меньше яркости на уровне моря, как в центре полосы полного солнечного затмения и как в сумерки, когда Солнце ниже горизонта на 2—3 градуса и могут быть видны планеты.
  • 25 км — интенсивность первичной космической радиации начинает преобладать над вторичной (рождённой в атмосфере)
  • 25—26 км — максимальная высота реального применения существующих реактивных самолётов.
  • 29 км — самая низкая научно определённая граница атмосферы по закону изменения давления и падения температуры с высотой, XIX век. Тогда не знали о стратосфере и обратном подъёме температуры.
  • 30 км — яркость неба в зените 20—35 кд/м² (~1 % наземного), звёзд не видно, могут быть видны самые яркие планеты. Высота однородной атмосферы над этим уровнем 95—100 м.
  • 30—100 км — средняя атмосфера по терминологии COSPAR[33].
  • 34,4 км — среднее давление у поверхности Марса соответствует этой высоте. Тем не менее этот разреженный газ способен ветрами поднять пыль, окрашивающую марсианское небо в жёлто-розовый цвет.
  • 34,668 км — рекорд высоты стратостата с двумя пилотами (проект «Страто-Лаб»[en], 1961 г.)
  • ок. 35 км — начало космоса для воды или тройная точка воды: на этой высоте атмосферное давление 611,657 Па и вода кипит при 0 °C, а выше не может находиться в жидком виде.
  • 37,8 км — рекорд высоты полёта турбореактивных самолётов (МиГ-25М, динамический потолок).
  • ок. 40 км (52 000 шагов) — верхняя граница атмосферы в XI веке: первое научное определение её высоты по продолжительности сумерек и диаметру Земли (арабский учёный Альгазен, 965—1039 гг.)
  • 41,42 км — рекорд высоты стратостата, управляемого одним человеком, а также рекорд высоты прыжка с парашютом (Алан Юстас, 2014 г.). Предыдущий рекорд — 39 км (Феликс Баумгартнер, 2012 г.)
  • 45 км — теоретический предел для прямоточного воздушно-реактивного самолёта.
  • 48 км — атмосфера не ослабляет ультрафиолетовые лучи Солнца.
  • 50—55 км — граница между стратосферой и мезосферой (стратопауза).
  • 50—150 км — в этой зоне ни один аппарат не сможет долго лететь на постоянной высоте[40][41].
  • 51,694 км — последний пилотируемый рекорд высоты в докосмическую эпоху (Джозеф Уокер на ракетоплане X-15, 30 марта 1961 г., см. Список полетов X-15[en]). Высота однородной атмосферы 5,4 м — менее 0,07 % её массы.
  • 53,7 км — рекорд высоты беспилотного газового аэростата метеозонда (20 сентября 2013 г., Япония).
  • 55 км — спускаемый аппарат при баллистическом спуске испытывает максимальные перегрузки.
    Атмосфера перестаёт поглощать космическую радиацию. Яркость неба ок. 5 кд/м². Выше свечение некоторых явлений может намного перекрывать яркость рассеянного света (см. далее).
  • 40—80 км — максимальная ионизация воздуха (превращение воздуха в плазму) от трения о корпус спускаемого аппарата при входе в атмосферу с первой космической скоростью.
  • 60 км — начало ионосферы — области атмосферы, ионизированной солнечным излучением.
  • 70 км — верхняя граница атмосферы в 1714 г. по расчёту Эдмунда Галлея на основе измерений давления альпинистами, закона Бойля и наблюдений за метеорами.
  • 80 км — высота перигея ИСЗ, с которого начинается сход с орбиты.
    Начало регистрируемых перегрузок при спуске с 1-й космической скоростью (СА Союз).
  • 75—85 км — высота появления серебристых облаков, иногда имеющих яркость до 1—3 кд/м².
  • 80,45 км (50 миль) — граница космоса в ВВС США. NASA придерживается высоты ФАИ 100 км.
  • 80—90 км — граница между мезосферой и термосферой (мезопауза). Яркость неба 0,08 кд/м².
  • 90 км — начало регистрируемых перегрузок при спуске со второй космической скоростью.
  • 90—100 км — турбопауза, ниже которой гомосфера, где воздух перемешивается и одинаков по составу, а выше — гетеросфера, в которой ветры останавливаются и воздух делится на слои разных по массе газов.
  • ок. 100 км — начало плазмосферы, где ионизированный воздух взаимодействует с магнитосферой.
  • ок. 100 км — самый яркий натриевый слой свечения атмосферы толщиной 10—20 км, из космоса наблюдается как единый светящийся слой
  • 100 км — зарегистрированная граница атмосферы в 1902 г.

Околоземное космическое пространство

100 км — официальная международная граница между атмосферой и космосом

  • 100—110 км — начало разрушения спутника: обгорание антенн и панелей солнечных батарей.
  • 110 км — минимальная высота аппарата, буксируемого более высоколетящим тяжёлым спутником.
  • 110—120 км — минимальная высота начала последнего витка спутника с наименьшим BC.
  • 118 км — переход от атмосферного ветра к потокам заряженных частиц.
  • 121—122 — самый низкий начальный перигей секретных спутников, но апогей их был 260—400 км.
  • 122 км (400 000 футов) — первые заметные проявления атмосферы при возвращении с орбиты: набегающий воздух стабилизирует крылатый аппарат типа Спейс Шаттл носом по ходу движени.
  • 120—130 км — шарообразный спутник диаметром 1—1,1 м и массой 500—1000 кг, завершая оборот, переходит в баллистический спуск; однако обычно спутники менее плотные, имеют необтекаемые выступающие детали, и потому высота начала последнего витка не менее 140 км.
  • 135 км — максимальная высота начала сгорания самых быстрых метеоров и болидов.
  • 150 км— спутник с геометрически нарастающей быстротой теряет высоту, ему осталось существовать 1—2 оборота; спутник диаметром 1,1 м массой 1000 кг за один оборот спустится на 20 км.
  • 150—160 км — дневное небо становится чёрным:яркость неба приближается к минимальной различаемой глазом яркости 1⋅10-6 кд/м².
  • 160 км (100 миль) — граница начала более-менее стабильных низких околоземных орбит.
  • 188 км — высота первого беспилотного космического полёта (ракета Фау-2, 1944 г.)
  • 200 км — наиболее низкая возможная орбита с краткосрочной стабильностью (до нескольких дней).
  • 302 км — максимальная высота (апогей) первого пилотируемого космического полёта (Ю. А. Гагарин на космическом корабле Восток-1, 12 апреля 1961 г.)
  • 320 км — зарегистрированная граница атмосферы в 1927 г.: открытие слоя Эплтона.
  • 350 км — наиболее низкая возможная орбита с долгосрочной стабильностью (до нескольких лет).
  • ок. 400 км — высота орбиты Международной космической станции. Наибольшая высота ядерных испытаний (Starfish Prime, 1962 г.). Взрыв создал временный искусственный радиационный пояс, который мог бы умертвить космонавтов на околоземных орбитах, но в это время не проводилось пилотируемых полётов.
  • 500 км — начало внутреннего протонного радиационного пояса и окончание безопасных орбит для длительных полётов человека. Не различаемая глазом яркость неба всё ещё имеет место.
  • 690 км — средняя высота границы между термосферой и экзосферой (Термопауза, экзобаза). Выше экзобазы длина свободного пробега молекул воздуха больше высоты однородной атмосферы и если они летят вверх со скоростью более второй космической, то с вероятностью свыше 50 % покинут атмосферу.
  • 947 км — высота апогея первого искусственного спутника Земли (Спутник-1, 1957 г.).
  • 1000—1100 км — максимальная высота полярных сияний, последнее видимое с поверхности Земли проявление атмосферы; но обычно хорошо заметные сияния яркостью до 1 кд/м² происходят на высотах 90—400 км. Плотность среды 400—500 миллионов частиц на 1 дм³.
  • 1300 км — зарегистрированная граница атмосферы к 1950 году.
  • 1320 км — максимальная высота траектории баллистической ракеты при полёте на расстояние 10 тыс. км.
  • 1372 км — максимальная высота, достигнутая человеком до первых полётов к Луне; космонавты впервые увидели не просто закруглённый горизонт, а шарообразность Земли (корабль Джемини-11 2 сентября 1966 г.).
  • 2000 км — условная граница между низкими и средними околоземными орбитами. Атмосфера не оказывает воздействия на спутники, и они могут существовать на орбите многие тысячелетия.
  • 3000 км — максимальная интенсивность потока протонов внутреннего радиационного пояса (до 0,5—1 Гр/час — смертельная доза в течение нескольких часов полёта).
  • 12 756,49 км — мы удалились на расстояние, равное экваториальному диаметру планеты Земля.
  • 17 000 км — максимум интенсивности внешнего электронного радиационного пояса до 0,4 Гр в сутки.
  • 27 743 км — расстояние пролёта заранее (свыше 1 дня) обнаруженного астероида 2012 DA14.
  • 35 786 км — граница между средними и высокими околоземными орбитами[en].
    Высота геостационарной орбиты, спутник на такой орбите будет всегда висеть над одной точкой экватора. Плотность частиц на этой высоте ~20—30 тыс. атомов водорода на дм³.
  • ок. 80 000 км — теоретический предел атмосферы в первой половине XX века. Если бы вся атмосфера равномерно вращалась вместе с Землёй, то с этой высоты на экваторе центробежная сила превосходила бы притяжение, и молекулы воздуха, вышедшие за эту границу, разлетались бы в разные стороны[87][88]. Граница оказалась близка к реальной и явление рассеяния атмосферы имеет место, но происходит оно из-за теплового и корпускулярного воздействия Солнца во всём объёме экзосферы.
  • ок. 90 000 км — расстояние до головной ударной волны, образованной столкновением магнитосферы Земли с солнечным ветром.
  • ок. 100 000 км — верхняя граница экзосферы (геокорона) Земли со стороны Солнца[89], во время повышенной солнечной активности она уплотняется до 5 диаметров Земли (~60 тыс. км). Однако с теневой стороны последние следы «хвоста» экзосферы, сдуваемого солнечным ветром, могут прослеживаться до расстояний 50—100 диаметров Земли (600—1200 тыс. км). Каждый месяц в течение четырёх дней этот хвост пересекает Луна

НУ А ДАЛЬШЕ ДУМАЮ НЕТУ БОЛЬШОЙ НЕОБХОДИМОСТИ ПИСАТЬ, ИБО ТАМ НА МИЛЛИОНЫ И МИЛЛИАРДЫ КИЛОМЕТРОВ(МЕЖПЛАНЕТНОЕ, МЕЖЗВЕЗДНОЕ И МЕЖГАЛАКТИЧЕСКОЕ ПРОСТРАНСТВО)

Скорости, необходимые для выхода в ближний и дальний космос

Для того чтобы выйти на орбиту, тело должно достичь определённой скорости. Космические скорости для Земли:

Если же какая-либо из скоростей будет меньше указанной, то тело не сможет выйти на соответствующую орбиту (утверждение верно лишь для старта с указанной скоростью с поверхности Земли и дальнейшего движения без тяги).

Первым, кто понял, что для достижения таких скоростей при использовании любого химического топлива нужна многоступенчатая ракета на жидком топливе, был Константин Эдуардович Циолковский.

Скорости разгона космического аппарата при помощи одного только ионного двигателя для вывода его на земную орбиту недостаточно, но для движения в межпланетном космическом пространстве и маневрирования он вполне подходит и используется достаточно часто.

А ЧТО ЖЕ БУДЕТ С ЧЕЛОВЕКОМ, ЕСЛИ ОН ОКАЖЕТСЯ В КОСМОСЕ БЕЗ СКАФАНДРА

Как утверждают учёные НАСА, вопреки распространённым представлениям, при попадании в открытый космос без защитного скафандра человек не замёрзнет, не взорвётся и мгновенно не потеряет сознание, его кровь не закипит — вместо этого настанет смерть от недостатка кислорода. Опасность заключается в самом процессе декомпрессии — именно этот период времени наиболее опасен для организма, так как при взрывной декомпрессии пузырьки газа в крови начинают расширяться. Если присутствует хладагент (например, азот), то при таких условиях он замораживает кровь. В космических условиях недостаточно давления для поддержания жидкого состояния вещества (возможны лишь газообразное или твёрдое состояние, за исключением жидкого гелия), поэтому вначале со слизистых оболочек организма (язык, глаза, лёгкие) начнёт быстро испаряться вода. Некоторые другие проблемы — декомпрессионная болезнь, солнечные ожоги незащищённых участков кожи и поражение подкожных тканей — начнут сказываться уже через 10 секунд. В какой-то момент человек потеряет сознание из-за нехватки кислорода. Смерть может наступить примерно через 1-2 минуты, хотя точно это не известно. Тем не менее, если не задерживать дыхание в лёгких (попытка задержки приведёт к баротравме), то 30-60 секунд пребывания в открытом космосе не вызовут каких-либо необратимых повреждений человеческого организма.

В НАСА описывают случай, когда человек случайно оказался в пространстве, близком к вакууму (давление ниже 1 Па) из-за утечки воздуха из скафандра. Человек оставался в сознании приблизительно 14 секунд — примерно такое время требуется для того, чтобы обеднённая кислородом кровь попала из лёгких в мозг. Внутри скафандра не возник полный вакуум, и рекомпрессия испытательной камеры началась приблизительно через 15 секунд. Сознание вернулось к человеку, когда давление поднялось до эквивалентного высоте примерно 4,6 км. Позже попавший в вакуум человек рассказывал, что он чувствовал и слышал, как из него выходит воздух, и его последнее осознанное воспоминание состояло в том, что он чувствовал, как вода на его языке закипает.

ТАК ЧТО НЕ УХОДИТЕ В КОСМОС БЕЗ КОСТЮМА

За пределами Солнечной системы

Межзвездное пространство представляет собой области внутри галактик. Говоря другими словами, это космическое пространство без небесных тел, заполненное облаками межзвёздного газа, пылью, излучением и электромагнитными полями. Кроме того, здесь присутствует таинственная темная материя.

Его состав – это результат первичного нуклеосинтеза, который происходил после Большого взрыва, а также ядерных реакций, протекающих в звездах. Распределение вещества в межзвездном пространстве весьма неоднородно: здесь есть облака разной температуры, скопления горячего газа. Его особенностью является низкая плотность – на кубический сантиметр приходится не более 1 тыс. атомов.

Немного о темной материи

Все звезды, многочисленные галактики и другие видимые астрономические объекты составляют лишь небольшую часть от общего количества вещества нашей Вселенной. Ее львиную долю занимает так называемая темная материя, которая не испускает электромагнитного излучения и не поглощает его. Следует понимать, что данное название не подразумевает ничего ужасного и зловещего, просто оно говорит о невозможности наблюдения данного феномена. Физики, астрономы и космологи не знают, что это такое, но ее существование является почти неоспоримым фактом.

Данная субстанция практически не взаимодействует с обычным веществом, поэтому ее так сложно обнаружить. Единственным способом узнать о существовании – отследить гравитационное воздействие, которое темная материя оказывает на астрономические объекты.

Согласно некоторым моделям, темная материя и энергия занимает в составе Вселенной более 95%, при этом на звезды и другие небесные тела приходится менее 1%, а еще 3,6% занимает межгалактический газ.

удивительно, правда?\

Почему в космосе холодно? Какая в космосе температура?

Температура в космосе равна -273 градусам Цельсия. Такое значение называют “абсолютным нулем”, поскольку при нем атомы веществ перестают двигаться. Но почему же в космосе так холодно, даже несмотря на то, что сквозь него проходят солнечные лучи? Низкая температура связана с тем, что в межпланетном пространстве практически отсутствуют какие-либо вещества. Соответственно, солнечным лучам нечего нагревать. Почему в космосе холодно, если там вакуум Теплопроводность вакуума равна нулю, и он полностью пропускает излучение. Поскольку в нем отсутствуют какие-либо вещества и объекты, проходящие сквозь него солнечные лучи ничего не нагревают. Соответственно, температура не меняется и остается равной абсолютному нулю.

надеюсь вам понравилось читать про космос и его пространство, на сегодня хватит, спасибо за прочтение я очень благодарен.

до встречи!!!

социальные сети:

телеграмм: https://t.me/BCEprosto0