July 25, 2023

Квантовые компьютеры

Эйнштейн однажды сказал – «Господь не играет в кости». На что Бор ему ответил: «Альберт, не надо учить Бога, как ему жить».

1. Предистория. Точкой отсчета квантовой эры принято считать 1900 год, когда М. Планк впервые выдвинул гипотезу о том, что энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями): успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Идею подхватили и развили многие выдающиеся ученые — Бор, Эйнштейн, Гейзенберг, Шредингер, что привело к созданию и развитию такой науки как квантовая физика. Квантовая физика принесла в нашу обычную жизнь много изобретений и технологий, без которых сейчас трудно себе представить окружающий мир: компьютеры, мобильные телефоны и прочие гаджеты, интернет, лазеры, оптоволоконные сети, атомная энергетика, рентген, томография, электронные микроскопы.

2. Рассказ о квантах. Вся окружающая нас материя (живая и неживая) состоит из атомов. Раньше считали, что менделеевские атомы являются теми основополагающими элементарными компонентами, из которых все и устроено. Потом выяснилось, что нет. Атомы имеют сложную внутреннюю структуру. Они состоят из так называемых «ядер», которые образуют протоны и нейтроны (ядра, по масштабам атомов, тяжелые), и вращающихся вокруг них электронов (они легкие). Все это отдаленно напоминает нашу солнечную систему. В центре – огромное и массивное солнце, а вокруг него вращаются маленькие (по сравнению с солнцем) планеты.

Нейтроны, протоны и электроны были названы «элементарными частицами». Далее обнаружилось, что электрон – он, действительно, «элементарный». А протоны и нейтроны – нет. Они состоят из так называемых кварков. Да и других «элементарных» частиц со временем открыли великое множество, они взаимодействуют между собой, преобразуются друг в друга. Сейчас уже стало понятно, по каким законам.

Это понимание дала так называемая «стандартная модель» – одно из величайших достижений современной физики. А в ее основе лежит квантовая механика, которая возникла в конце XIX века.

Микромир живёт по вероятностным законам.

Вот представьте себе, что вы идете по лесу, ориентируясь на солнце. Небо чистое и голубое. А если все затянуто облаками? Свет-то он есть. Но откуда идет? И где там солнце? Вы смотрите на небо. Вот здесь вроде ярче. Наверно, солнце там. Но ваш прогноз может быть неверным. А вдруг в этом месте просто облака раздвинулись? А потом они раздвинутся в другом месте. Так что же делать? Дождаться пока эти облака действительно разойдутся, и вы увидите солнце в его законном месте. Говоря словами физики, «произведете измерение». Вот так и в квантовой механике. Положение и характеристики каждой элементарной частицы носят случайный характер. Так называемый «корпускулярно-волновой дуализм». Частица, с одной стороны вроде бы и частица, такой маленький материальный объект, как песчинка – мала, но вот она, лежит здесь, на ладони. А с другой стороны, она ведет себя по тому примеру солнца в облаках. Где оно? То ли тут, то ли там.

Спор Энштейна и Бора

Суть спора, кстати, много сделавшего для развития науки, состояла в следующем. Эйнштейн считал, что весь математический аппарат квантовой механики не отражает истинного устройства микромира, а просто является такой хорошей придумкой, которая позволяет с высокой точностью предсказывать происходящие там события. А Бор отвечал ему, что это не так: если наши вычисления совпадают с результатами наблюдений и экспериментов, то они описывают истинное устройство мира. Сейчас в научном сообществе преобладает точка зрения Бора. Хотя вопросов накопилось много. Они носят фундаментальный характер, и ответов на них пока нет.

Макромир и кванты, два разных мира?

Дело в том, что хотя все эти элементарные частицы живут по своим законам, весь окружающий макромир, в том числе и мы с вами, состоящие из всей этой «мелочи», живет по законам другим. Как так?

Дело в том, что так называемое уравнение Шредингера – основа описания всей квантовой физики, переходит в классические уравнения физики Ньютона, к которой мы привыкли. Это установил нобелевский лауреат Де Бройль, который, еще тогда, в начале XX века, ввел понятие «длинны волны Де Бройля» и показал, что если она мала, то квантовая физика переходит в ньютоновскую. А для всех макрообъектов, таких, например, как мы с вами, она мала. Так что ларчик открылся просто.

https://kapital-rus.ru/articles/article/triumf_intellekta_chto_dalo_chelovechestvu_otkrytie_fantasticheskogo_kvanto/

3. Квантовые компьютеры. Логично было бы предположить, что рано или поздно кто-то выдвинет идею о том, что почему бы не использовать квантовые системы для вычислений. И вот в 1980 году это случилось. Первым идею квантовых вычислений высказал в 1980 году наш ученый Юрий Манин. В 1981 году Р. Фейнман в докладе на первой конференции по физике вычислений, проведенной в Массачусетском технологическом институте, отметил, что невозможно моделировать эволюцию квантовой системы на классическом компьютере эффективным способом. Он предложил элементарную модель квантового компьютера, который будет способен провести такое моделирование.

Ква́нтовый компью́тер — вычислительное устройство, которое использует явления квантовой механики (квантовая суперпозиция, квантовая запутанность) для передачи и обработки данных.

Развитие квантовых вычислений идет медленно. Перед учеными и инженерами стоят очень сложные задачи, квантовые состояния очень недолговечны и хрупки, чтобы сохранить их достаточно долгое время для выполнения вычислений, приходится строить саркофаги за десятки миллионов долларов, в которых поддерживается температура чуть выше абсолютного ноля, и которые максимально защищены от внешних воздействий.

4. Развитие квантовых технологий. Мы часто слышим о большом количестве новых стартапов или таких проектах уже существующих компаний, как интернет вещей, машинное обучение, big data и информационная безопасность. Эти тренды звучат везде, задают информационные поводы, однако за ними, кроме красоты алгоритмических решений, красоты математики, красоты программирования, стоит реальное железо. И это железо уже квантовое. Сейчас это переход от управления коллективными квантовыми явлениями, которые лежат в основе таких устройств, как транзисторы и лазеры, к управлению индивидуальными квантовыми свойствами.

Если брать лазер, как пример, то лазер — управление большим количеством частиц света, большим количеством фотонов, и сейчас мы научились управлять светом, атомами, веществом на уровне отдельных микроскопических элементов. Квантовые частицы позволяют построить компьютер, который будет решать свои задачи быстрее. Квантовые компьютеры позволяют построить системы коммуникации, которые будут лучше защищены от прослушивания. Квантовые технологии позволяют создать более миниатюрные сенсоры.

Все технологически успешные страны в данный момент активно занимаются развитием квантовых технологий. В эти исследования вкладывается огромное количество средств, создаются специальные программы поддержки квантовых технологий. Если вернуться в историю — все мы помним космическую гонку между СССР и США.

Говоря о квантовом компьютере, хочется создать некий контекст, позволяющий понять, почему квантовые компьютеры вообще интересны и нужны. Здесь представлен всем известный закон Мура, который выражает некий тренд роста производительности уже существующих компьютеров. Мы знаем, что год от года компьютеры становятся мощнее, однако за этим стоит уменьшение элементной базы, ее миниатюризация. Благодаря нашему прогрессу в создании транзисторов мы можем создавать их всё меньше, и располагать всё плотнее на элементарную единицу площади. У этого тренда есть фундаментальный предел, обусловленный физикой. Самый миниатюрный в мире транзистор состоит из семи атомов. Однако если закон Мура будет продолжаться так, как он продолжается, то в 2020 году нам потребуется создавать компьютеры с транзистором в один атом. И это кажется невозможным. Что здесь можно сделать? Можно наращивать производительность за счет других технологий, за счет облачных вычислений, распараллеливания, придумать какую-то элементную базу, которая позволит максимально близко подобраться к пределу закона Мура, то есть создать самый маленький в мире транзистор. Это очень классная задача.

5. Почему квантовый компьютер лучше ? (Картинка о трёх облаках)

Задачи, которые классический компьютер решает плохо: это оптимизация поиска и моделирование сложных физических систем. Это требует огромного количества ресурсов. Хотелось бы получить физическую систему, которая позволит решать эти задачи более оптимальным образом. Оказывается, она существует, и возникает в контексте квантового компьютера.

Что дает квантовая физика? Какие интересные следствия и фишки у нее есть, которые могли бы быть полезны с точки зрения теории информации или будущих вычислений?

1. В классическом мире мы привыкли думать о том, что если у нас есть состояние какой-то физической системы, то оно должно быть однозначно чем-то задано. Если у нас есть точка в пространстве, то мы знаем, что система находится в этой точке пространства. В квантовой физике такое понятие ввести нельзя. Дело в том, что квантовая система, если она не наблюдается, находится в суперпозиции всех возможных состояний. В частности, если у нее есть два допустимых состояния, орел и решка, то до тех пор, пока мы не измерили это состояние, это и орел, и решка одновременно. И только измерение дает нам гарантированный ответ, в каком состоянии находится система. До измерения система находится в состоянии суперпозиции.

2. Свойство квантовой запутанности. В квантовом мире частицы могут проявлять очень сильные корреляции, то есть их свойства могут быть очень сильно завязаны между собой, даже если эти частицы достаточно сильно пространственно удалены. Объясняя концепцию квантовой запутанности, часто приводят пример мысленного эксперимента, когда у нас была какая-то частица со спином 0, она распадается на две частицы, одну мы оставляем у себя в лаборатории, вторую отправляем в Туманность Андромеды, и, измеряя спин первой частицы, мы точно узнаем спин частицы в Туманности Андромеды. Это и есть в некотором смысле проявление свойств квантовой запутанности, сильных квантовых корреляций, которые могут быть полезны с точки зрения вычислений.

3. Хрупкость. Квантовые состояния по сравнению с классическими являются достаточно хрупкими, процесс измерения как раз и является процессом возмущения. Вопрос в том, детерменированно ли этот процесс возмущения происходит? Очень сложно создать большую квантовую систему, элементы которой будут, с одной стороны, достаточно хорошо взаимодействовать между собой и при этом будут достаточно хорошо защищены от окружения, которое может их разрушить.

🧠Еще один интересный аспект — теорема о запрете клонирования. Это запрещающая теорема. Если в квантовом мире есть произвольное квантовое состояние, заранее неизвестное, то его нельзя скопировать, в отличие от классической информации. Если есть классический сигнал, его всегда можно скопировать. В квантовом мире произвольное квантовое состояние скопировать нельзя. И это радикальное отличие квантовой информации от классической.

6. Концепция квантовых излучений или немного о кубитах.

На чем строится концепция квантовых вычислений? Представим эту систему, сравнив биты, привычные нам и квантовые кубиты: система битов, которая нам привычна в классических компьютерах, заменяется на систему кубитов. Это двухуровневая квантовая система или система типа орел-решка, когда есть два возможных состояния, и до момента измерения система находится в суперпозиции: одновременно и в этом состоянии, и в этом с какой-то вероятностью. Все логические элементы из классических процессов заменяются на квантовые процессы, и результат вычислений получается путем измерений. Таким образом в квантовом компьютере получается обработка сразу всех возможных вариантов реализации, то есть на вход вы подаете не один бит, не ноль или единицу, а все возможные комбинации — и проводите все операции над этой суперпозицией. В результате получается некое квантовое состояние. Производите его измерение и получаете ответ. В принципе, на понятийном уровне это вся концепция квантовых вычислений. Биты заменили на кубиты, классические операции заменили на квантовые операции, в результате получаем то, что нужно измерить, многократно измеряем и получаем ответ.

Это то, из чего могут состоять кубиты. Дело в том, что кубиты могут состоять из огромного многообразия различных физических систем. Мы привыкли, что бит кодируется за счет уровня напряжения. В квантовой физике есть многообразие физических систем. Это и частица света, и частица материи, и ядерные спины, и твердотельные системы, которые могут находиться в таком интересном состоянии суперпозиции. Они обладают различными преимуществами и различными недостатками.

Вот ключевой на сегодняшний день факт: никто до конца не понимает, на какой физической, элементной базе будет построен квантовый компьютер в итоге. Проводилось соревнование между двумя квантовыми компьютерами, построенными на разных физических принципах, и оно не выявило какого-то радикального преимущества одной системы над другой. Одни системы лучше масштабируются, другие легче контролировать, третьи лучше защищены от декогеренции, от процесса взаимодействия с окружением.

7. И вывод?

Квантовый компьютер — одновременно угроза существующей инфраструктуре информационной безопасности (квантовый алгоритм Шора — самый главный и самый интересный пример квантового алгоритма, решает практическую задачу экспоненциально быстрее, чем классический компьютер, а это означает, что данные наших кредитных карт могут быть взломаны сравнительно быстро), и наилучший агент для передачи информации. Квантовый компьютер позволяет нам сделать так называемую гибридную систему, которая будет брать от природы, от различных форм квантовой материи самое лучшее. Хорошие показатели с точки зрения хранения квантовых состояний показывают атомные системы. Поэтому квантовый компьютер — большая и интересная фундаментальная задача, которая позволит скомбинировать, взять от природы лучшее и построить наиболее привлекательную, производительную и интересную гибридную систему.

А в следующий раз мы с вами поговорим о квантовых коммуникациях)

Поделитесь статьей, и скажите, что осталось непонятным?