September 2, 2020

Additive Manufacturing-Next Era of Manufacturing

Additive manufacturing is a disruptive and rapidly-growing technology that allows designers to prepare quick or rapid prototypes as well as complex designs, which otherwise would not have been possible through legacy subtractive manufacturing processes. The novel technology provides the automotive industry with innovative designs, innovation freedom, and proficiency in the supply chain. This technology is also used for testing, manufacturing, and assembling automotive parts and components with higher efficiency, optimization, and cost-efficiency.

DOWNLOAD PDF FILE OF SAMPLE REPORT

Additive manufacturing is the process of creating an object by building it one layer at a time. It is the opposite of subtractive manufacturing, in which an object is created by cutting away at a solid block of material until the final product is complete.

Technically, additive manufacturing can refer to any process where a product is created by building something up, such as molding, but it typically refers to 3-D printing.

Additive manufacturing was first used to develop prototypes in the 1980s—these objects were not usually functional. This process was known as rapid prototyping because it allowed people to create a scale model of the final object quickly, without the typical setup process and costs involved in creating a prototype.

As additive manufacturing improved, its uses expanded to rapid tooling, which was used to create molds for final products. By the early 2000s, additive manufacturing was being used to create functional products. More recently, companies like Boeing and General Electric have begun using additive manufacturing as integral parts of their business processes.

How it works

To create an object using additive manufacturing, someone must first create a design. This is typically done using computer aided design, or CAD, software, or by taking a scan of the object someone wants to print. Software then translates the design into a layer by layer framework for the additive manufacturing machine to follow. This is sent to the 3-D printer, which begins creating the object immediately. "You go directly from digital to physical, which is quite a change," said MIT Sloan senior lecturer Thomas Roemer, who is the executive director of MIT's Leaders for Global Operations program.

Additive manufacturing uses any number of materials, from polymers, metals, and ceramics to foams, gels, and even biomaterials. "You can use pretty much anything," said Arvind Kalidindi, a materials science and engineering PhD candidate at MIT. "As long as you find a way to locally join two parts, you can 3-D print it."

The actual process of additive manufacturing can be done in a number of ways, all of which can take several hours to several days, depending on the object's size. One common method uses a nozzle to lay successive layers of material on top of each other until the final product is complete.

for more DOWNLOAD PDF FILE OF SAMPLE REPORT