Лю Хуэй (ок. 220, умер ок. 280)

Лю Хуэй - китайский математик. Лю Хуэй известен своими комментариями на «Математику в девяти книгах» (Цзю чжан суаньшу), которая представляет собой сборник решений математических задач из повседневной жизни. Лю Хуэй опубликовал «Цзю чжан суаньшу» в 263 году со своими комментариями, это старейшая сохранившаяся публикация книги. Ему принадлежат такие труды:

  • Расчёт числа π методом вписанных правильных многоугольников.
  • Решение систем линейных уравнений методом, названным впоследствии именем Гаусса.
  • Доказательство теоремы Пифагора.
  • Расчёт объёма призмы, пирамиды, тетраэдра, цилиндра, конуса и усечённого конуса.

До недавнего времени в большинстве вариантов истории математики рассматривалась исключительно европоцентрическая позиция и достижения Востока попросту игнорировались, пока Джордж Гевергезе Джозеф не написал о древней математике Юго-Восточной Азии книгу «Павлиний хохолок».

Любимое число π 

В своих комментариях к "Девятикнижию" Лю Хуэй указывает, что традиционное правило «π = 3» ошибочно: вместо длины окружности оно дает периметр вписанного шестиугольника, который очевидно меньше. Затем он вычисляет более точное значение для длины окружности (и косвенно для π). Мало того, он пошел еще дальше и описал вычислительный метод оценки числа π со сколь угодно высокой точностью. Его подход напоминал подход Архимеда: аппроксимировать (приближать что-то к чему-то с той или иной точностью) окружность правильными многоугольниками с 6, 12, 24, 48, 96, … сторонами. Чтобы применить метод исчерпания, Архимед использовал одну последовательность аппроксимирующих многоугольников внутри, вписывая их в окружность, а вторую – снаружи, описывая их около окружности. Ли Хуэй пользовался только вписанными многоугольниками, но в завершение расчета он привел геометрические аргументы в пользу того, чтобы определить как нижнюю, так и верхнюю границы истинного значения π. Этот метод позволяет получить сколь угодно точное приближение к π, не используя ничего сложнее квадратных корней. Для вычисления квадратных корней существует формализованный метод, трудоемкий, но не более сложный, чем умножение в столбик. Умелый расчетчик вполне мог бы за один день получить десять десятичных знаков π.

Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для π по следующему принципу:


Оценки числа π, полученные Лю Хуэем, европейцам удалось превзойти лишь 1000 лет спустя.

Доказательство теоремы Пифагора.

Одна из реконструкций доказательства теоремы Пифагора, принадлежащего Лю Хуэю и восстановленного на базе текстовых указаний в его книге, представляет собой хитроумное и необычное рассечение.

Собственно прямоугольный треугольник, о котором идет речь, показан на рисунке черным. Квадрат, построенный на одном из его катетов (светло-серый), рассечен надвое диагональю. Квадрат построенный на другом катете, разрезан на 5 частей: один маленький квадратик (темно-серый), пара симметрично расположенных треугольников (средне-серых) тех же формы и размера, что и первоначальный прямоугольный треугольник, и пара симметрично расположенных треугольников (белых), заполняющих оставшееся место. После этого все семь кусочков собираются воедино и образуют квадрат на гипотенузе.