July 3, 2019

Парадокс Монти Холла

Представьте, что Вы участвуете в телешоу. Перед вами три одинаковых двери. За одной из них (неизвестно, за какой) скрывается автомобиль. Если угадаете нужную дверь, он ваш. За двумя другими дверями спрятано по козлу.

Вы выбрали одну дверь(наугад).

Затем ведущий телешоу Монти Холл (это такой заграничный Якубович), которому точно известно, где находится автомобиль, открывает одну из оставшихся дверей – причем заведомо ту, за которой скрывается козел. И после этого ведущий предлагает вам изменить свое решение и выбрать другую дверь...

Машина находится за одной из трех дверей. Следовательно, вероятность того, что вы угадали, за какой именно дверью находится машина, составляет 1/3 – один шанс из трех. Другими словами, если вы сыграете в эту игру много раз, то машина за выбранной Вами дверью окажется в одном случае из трех. Обратите внимание! Вы угадаете не каждый третий раз, а в одном случае из трех. Т.е. из ста попыток вы угадаете в примерно тридцати трех случаях. Причем мы не знаем, как будут распределены эти случаи: возможно, угадывания и промахи будут чередоваться равномерно, или же вы сначала будете угадывать, а потом начнется полоса неудач, или же, наоборот, полоса неудач сменится чередой угадываний.

Итак, вероятность того, что вы угадали, составляет 1/3.

Но вероятность того, что вы не угадали, составляет 2/3. Вероятность того, что вы не угадали, выше, не правда ли?

Но это означает, что выше и вероятность того, что машина находится за другой дверью, за дверью, которую вы не выбрали.

Далее. Если бы ведущий не выводил из игры заведомо невыигрышную дверь, ваши шансы при смене решения так и остались бы на уровне «один из трех». Но ведущий открывает дверь с козлом, он исключает ее из ваших дальнейших попыток.

Соответственно, есть один шанс из трех, что выбранная вами дверь выигрышная и два шанса из трех, что машина стоит за другой дверью.

Поэтому вам выгоднее поменять свое решение, выбрать другую дверь.

Конечно, существует вероятность, что вы сразу угадали. И в этом случае при смене двери вы проиграете. Но такая вероятность в два раза ниже, чем вероятность того, что поменяв дверь, Вы выиграете. Вот и все. Это и есть пример того, как надо применять теорию вероятностей на практике.

Меняйте свой выбор и выигрывайте! Прекрасный фильм о гение математике!)("Двадцать одно")