May 11, 2021

Числа Фибоначчи — что это и для чего они нужны?

Время на чтение 5 минут.

История чисел Фибоначчи

Леонардо Пизано, по прозвищу Фибоначчи, — итальянский математик — родился в Пизе в 1170 году. Его отец работал в торговом порту на северо-востоке Алжира и часто путешествовал.

Фибоначчи изучал математику и во время обширных путешествий познакомился с индийско-арабской системой счисления. Оттуда математик и узнал о числовой последовательности, которую в древней Индии использовали в стихосложении.

Названа последовательность в честь итальянца, потому что именно он представил ее европейскому обществу в труде «Книга абака».

Что такое числа Фибоначчи?

Числа Фибоначчи — это ряд, состоящий из целых чисел. Их особенность заключается в том, что каждый элемент представляет собой сумму двух предыдущих чисел.

Последовательность Фибоначчи начинается с 0 и 1. Продолжить ряд легко: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и так до бесконечности.

Математик обратил внимание на числовую последовательность, когда думал о разведении кроликов. Задача была поставлена следующим образом: «Если новорожденную пару кроликов, самца и самку, поместить в поле, то сколько пар кроликов будет через год?».

Так как по условию задачи в поле поместили новорожденных кроликов, то спариваться они не могут, так как не достигли половой зрелости. Через месяц кролики начинают спариваться и еще через один – рождается первая пара потомков. «Родители» продолжают наращивать потомство, а дети месяц ждут своего взросления, чтобы тоже стать родителями. В итоге, через 3 месяца по полю будут бегать три пары кроликов. Через 4 месяца уже 5 пар, а через 5 месяцев – 8.

Уже прослеживается закономерность. В конце каждого месяца количество пар кроликов будет больше, чем в предыдущем месяце ровно на столько, сколько пар было два месяца назад.

С точки зрения математики — это красивая последовательность. Но больший интерес для исследователей представляет не сам ряд, а частное соседних чисел, равное, примерно 1,618 для всех элементов ряда. Эта пропорция больше известна как золотое сечение.

Это соотношение можно найти в предметах, которые нас отгружают: гармония в гранях снежинок, в расположении лепестков цветов, ячеек ананаса, завитки раковин у улитки — все подчиняется правилу золотого сечения. Даже строение нашего тела гармонично: если измерить наш рост и разделить на расстояние от пояса до ступней или длину руки на расстояние от локтя до кончиков пальцев, получится известное нам соотношение 1,618.

Если мы видим человека и его внешность кажется красивой, то скорее всего пропорции его лица соотносятся с соотношением чисел Фибоначчи.

Природа полагается на эту врожденную пропорцию для поддержания баланса.

Финансовые рынки имеют ту же математическую основу, что и перечисленные природные явления.

Числа Фибоначчи в трейдинге

Впервые изучением графиков биржевых котировок и поиском взаимосвязей занялся Ральф Hельсон Эллиотт, американский финансист. Ему удалось обнаружить в поведении фондового рынка особую гармонию. Как Вы уже догадались – гармонию золотого сечения. Наболее часто применяемый трейдерами инструмент это коррекции Фибоначчи.

Коррекции Фибоначчи

Как это работает: берутся экстремальные точки на графике акций: нижний и верхний уровни цены тренда, и вертикальное расстояние между ними делится на коэффициенты Фибоначчи: 23,6%, 38,2%, 50%, 61,8% и 100%. После определения уровней соотношений на графике рисуются горизонтальные линии, представляющие уровни, указывающие на возможные уровни поддержки (цена перестает идти ниже) и сопротивления (цена перестает идти выше).

Откуда берутся эти значения процентов?

  • Как мы уже сказали, в последовательности чисел Фибоначчи каждое число примерно в 1,618 раза больше предыдущего. Например, 21/13 = 1,615, а 55/34 = 1,618.
  • Соотношение 61,8% получается делением одного числа в ряду на число, которое следует за ним. Например, 8/13 = 0,615 (61,5%), а 21/34 = 0,618 (61,8%).
  • Соотношение 38,2% получается путем деления одного числа в ряду на число, расположенное двумя позициями позже. Например, 5/13 = 0,385 (38,5%), а 55/144 = 0,3818 (38,2%).
  • 23,6% рассчитывается путем деления одного числа в последовательности на число на три позиции выше. Например, 13/55 = 0,236 (23,6%), а 2/8 = 0,23076 (23,1%).
  • 0% — это начало отката, а 100% — полный разворот исходной части движения.

Трейдеры используют уровни коррекции Фибоначчи для определения стратегических моментов для получения выгодной цены. Если тренд возрастает, то уровни коррекции Фибоначчи используются как потенциальные точки покупки при откатах, если тренд убывающий, то как точки входа для коротких продаж.

пример коррекции по Фибоначчи