April 2, 2019

Загадочные белые карлики

Белые карлики – звезды, имеющие большую массу (порядка солнечной) и малый радиус (радиус Земли), что менее предела Чандрасекара для выбранной массы, являющиеся продуктом эволюции красных гигантов. Процесс производства термоядерной энергии в них прекращен, что приводит к особым свойствам этих звезд. Согласно различным оценкам, в нашей Галактике их количество составляет от 3 до 10 % всего звездного населения.

История открытия

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении Сириуса обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Механизм образования

Белые карлики представляют собой конечную стадию эволюции небольшой звезды с массой, сравнимой с массой Солнца. В каком случае они появляются? Когда в центре звезды, например, как наше Солнце, выгорает весь водород, ее ядро сжимается до больших плотностей, тогда как внешние слои сильно расширяются, и, сопровождаясь общим потускнением светимости, звезда превращается в красного гиганта. Пульсирующий красный гигант затем сбрасывает свою оболочку, поскольку внешние слои звезды слабо связаны с центральным горячим и очень плотным ядром. Впоследствии эта оболочка становится расширяющейся планетарной туманностью. Как видите красные гиганты и белые карлики очень тесно взаимосвязаны.

Процесс охлаждения белого карлика и кристаллизации его центральной части

Сжатие ядра происходит до крайне малых размеров, но, тем не менее, не превышает предела Чандрасекара, то есть верхний предел массы звезды, при котором она может существовать в виде белого карлика

Виды белых карликов

Некоторые белые карлики в шаровом скоплении NGC 6397, снимок Хаббла.

Спектрально их разделяют по двум группам. Излучение белого карлика делят на наиболее распространенный «водородный» спектральный класс DA (до 80 % от общего количества), в котором отсутствуют спектральные линии гелия, и более редкий «гелиевый белый карлик» тип DB, в спектрах звезд которого отсутствуют водородные линии.

Американский астроном Ико Ибен предложил различные сценарии их происхождения: в виду того, что горение гелия в красных гигантах неустойчиво, периодически развивается слоевая гелиевая вспышка. Он удачно предположил механизм сброса оболочки в разные стадии развития гелиевой вспышки – на ее пике и в период между двумя вспышками. Образование его зависит от механизма сброса оболочки соответственно

Строение

Среди них наиболее распространены углеродно-кислородные с оболочкой, состоящей из гелия и водорода.

Статистически радиус белого карлика сравним с радиусом Земли, а масса варьируется от 0,6 до 1,44 солнечных масс. Поверхностная температура находится в пределах – до 200 000 К, что также объясняет их цвет.

Ядро

Основной характеристикой внутреннего строения является очень высокая плотность ядра, в котором гравитационное равновесие обуславливается вырожденным электронным газом. Температура в недрах белого карлика и гравитационное сжатие уравновешивается давлением вырожденного газа, что обеспечивает относительную устойчивость диаметра, а его светимость, в основном, происходит за счет остывания и сжатия внешних слоев. Состав зависит насколько успела проэволюционировать материнская звезда, в основном это углерод с кислородом и небольшие примеси водорода и гелия, которые превращаются в вырожденный газ.

Эволюция

Гелиевая вспышка и сброс внешних оболочек красным гигантом продвигает звезду по диаграмме Герцшпрунга-Рассела, обуславливая его превалирующий химический состав. Жизненный цикл белого карлика, после этого, остается стабилен до самого своего остывания, когда звезда теряет свою светимость и становится невидимой, входя в стадию так называемого «черного карлика», — конечный результат эволюции, хотя в современной литературе этот термин используется все реже. Присутствие рядом звездных компаньонов продляет их жизнь из-за падения вещества на поверхность через формирование аккреционного диска. Особенности аккреции вещества в парных системах могут приводить к накоплению вещества на поверхности белых карликов, что в результате приводит к взрыву новой или сверхновой звезды (в случае особо массивных) типа Ia

Остаток сверхновой SN 1006 — представляет собой взорвавшейся белый карлик, который находился в двойной системе. Он постепенно захватывал вещество звезды-компаньона и возрастающая масса спровоцировала термоядерный взрыв, который разорвал карлика