Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil
Due to long-chain fatty acids (LCFAs)wanyang and acidification, rapeseed oil as a typical lipid in kitchen waste is difficult to be biodegraded by anaerobic digestion. It has been reported that incorporation of some conductive materials into reactors treating complex organic matter could enhance reactor performance. In this study, the aim was to study this possibility of application of granular activated carbon (GAC) in anaerobic digestion of rapeseed oil. As expected, the GAC-amended reactor could significantly improve methane yield and reduce acidification. Besides, the GAC-amended broth could efficiently degrade palmitate into methane. Microbial community analysis showed that bacteria (Syntrophomonas) and methanogens (Methanosarcina) were greatly enriched on the GAC surface in GAC-amended system. These results, and the kwon of easy enrichment of Syntrophomonas on conductive materials or current-harvesting electrodes in methanogenic and/or electrogenic systems, suggest that Syntrophomonas could participate in direct interspecies electron transfer with Methanosarcina species, when GAC is available as an electron transfer mediator. Hence, the addition of GAC could efficiently, stably and environmentally enhance the methanogenic metabolism of rapeseed oil.granular activated carbon supplier