October 16, 2020

Developing flexible electrochemical electrodes for heart pacing and as photoelectrodes

The scientists then printed and tested the SiC-based flexible bioelectronic devices for tissue stimulation. After mounting a viable contracting rat heart, they placed a flexible SiC device against the left and right ventricles to deliver electrical stimulation to the heart. Upon stimulation, the heart rate simultaneously synchronized to the stimulation rate to disrupt the electrocardiography (ECG) signal indicating a clear overdrive pacing effect. When they ceased electrical stimulation, the heart returned to is slow atrioventricular node rhythm. silicon carbide manufacturersThe experiment showed how the SiC/graphite/PDMS composite was fully applicable for tissue and organ modulation. Nair et al. additionally studied the electrochemical activities of the SiC surface after optical excitation and the results indicated a photoanodic output of the printed 3C-SiC devices. They confirmed the observations via a chemical reaction to oxidize water to hydrogen peroxide and based on the results they proposed further investigations to understand the exact mechanism of the observed catalytic process. Since hydrogen peroxide and other reactive oxygen species typically play an important role to modulate smooth muscle cells, the team studied the effects of H2O2 using 3C-SiC as a reservoir for muscle stimulation. Based on the outcomes they suggest remote therapeutic applications of the device to facilitate vasoconstriction in trauma surgeries or sphincter contraction after chronic spinal cord injury.
In this way, Vishnu Nair and colleagues demonstrated 2-D and 3-D laser writing of nitrogen-doped 3C-SiC on PDMS substrates. The resulting layer established a seamless hard-soft interface with PDMS. The flexible devices acted as stimulation electrodes for isolated hearts and as photoelectrodes for localized hydrogen peroxide production. black silicon carbide powderThe scientists aim to seamlessly integrate the semiconductor/elastomer composites in organ-on-a-chip or organoid-on-a-chip research, or in microfluidics systems for photoelectrochemical activity. Future studies will also precisely investigate the electrochemical mechanism underlying H2O2 production in the device.