September 8, 2023
ML Lab Pro 1
import numpy as np from scipy import stats # Given array data = np.array([115.3, 195.5, 120.5, 110.2, 90.4, 105.6, 110.9, 116.3, 122.3, 125.4]) # Mean (Average) mean = np.mean(data) # Median median = np.median(data) # Mode mode_result = stats.mode(data) mode = mode_result.mode[0] if mode_result.count[0] > 1 else "No mode" # Standard Deviation std_deviation = np.std(data) # Variance variance = np.var(data) # Min-Max Normalization min_value = np.min(data) max_value = np.max(data) min_max_normalized = (data - min_value) / (max_value - min_value) # Standardization (Z-Score) z_score = (data - mean) / std_deviation # Displaying results print("Mean:", mean) print("Median:", median) print("Mode:", mode) print("Standard Deviation:", std_deviation) print("Variance:", variance) print("Min-Max Normalization:", min_max_normalized) print("Standardization (Z-Score):", z_score)
Use the above array values and compute the mean, median, mode, standard deviation, variance, min-max normalization and standardization
se the above array values and compute the mean, median, mode, standard deviation, variance, min-max normalization and standardization