January 21, 2020

Semiconductor Silicon Wafer Market Value Projected to Expand by -2023

Report Highlights

The global market for semiconductor wafers should grow from $16.2 billion in 2018 to $21.3 billion by 2023 with a compound annual growth rate (CAGR) of 5.7% for the period of 2018-2023.

Report Scope:

This report forecasts the market for compound semiconductor wafers for 2018-2023. The report presents the market forecast in terms of dollar value ($ million) and shipment volume (msi).

Dollar value and shipment volume are broken down along the following end uses -
- Telecommunications.
- Instrumentation and scientific research.
- Healthcare.
- Energy, defense and surveillance.
- Computing and entertainment.
- Industrial and automotive.
- Retail and others.

Request For Report Sample: https://www.trendsmarketresearch.com/report/sample/12649

Each of the end applications is further broken down by crystal growth methods -
- Bridgman and allied methods (Bridgman).
- Float-zone (FZ).
- Czochralski (CZ) and allied methods (Czochralski).

Each end application is broken down by the following wafer-bonding methods -
- Direct bonding.
- Surface-activated bonding.
- Anodic bonding.
- Plasma bonding.

Each end application is further broken down by node size -
- 10 nm and lower.
- 12 to 22 nm.
- 28 nm and above.

Each end-application is further broken down by regional market -
- Americas.
- Europe, Middle East and Africa (EMEA).
- Asia Pacific (APAC).

Get Request for Discount: https://www.trendsmarketresearch.com/report/discount/12649

Report Includes:

- 72 data tables and 10 additional tables
- An overview of the global markets for semiconductor silicon wafers
- Analyses of global market trends, with data from 2017, 2018, and projections of compound annual growth rates (CAGRs) through 2023
- Identification of potential applications of semiconductor silicon wafers in consumer electronics, telecommunications, automotive, defence, and healthcare industry
- Overview of various bonding technologies in the semiconductor silicon wafers industry, including direct bonding, surface activated bonding, plasma activated bonding and anodic bonding
- Coverage of major innovation initiatives in silicon wafer fabrication technology
- Detailed analysis of major vendors and suppliers of the industry, including 3M, Global Wafers Co., Ltd., Mechatronik Systemtechnik GmbH, Nissan Chemical Corporation, Samsung, Shanghai Simgui Technology, Toshiba and Wafer World Inc

Summary

BCC Research forecasts that during 2018-2023, the following shifts will be observed:

After registering a value of $REDACTED per square inch in 2017, the average selling price (ASP) will change from $REDACTED per square inch in 2018 to $REDACTED per square inch in 2023: an increase of REDACTED%.

The above metric does not include solar/photovoltaic cells.

Semiconductor wafers covered in this report include silicon and compound semiconductor materials. Stability in the ASP will be largely due to price escalation in silicon wafers in 2018-2019. Compound semiconductor wafers, on the other hand, will witness a steady decline in ASP. Silicon wafer manufacturing requires substantive investment and long gestation periods. Consequently, there are only a few wafer manufacturers large enough to influence pricing. The rest cater mainly to niche markets. Another pertinent observation is that the scale of operations in silicon wafers is substantially higher than in compound semiconductors. The ASP of silicon wafers is also much lower. There is an ever-growing
pressure on silicon availability due to demand from the solar/photovoltaic (PV) cell industry. Superior material properties of specific compound semiconductors have prompted designers to increasingly look toward compound semiconductors.

The low ASP of silicon wafers is primarily due to the abundant availability of silicon for compound semiconductors; notwithstanding the pressure exerted by solar/PV cell industry. It should also be remembered that compound semiconductors are in demand in the solar/PV cell industry, though not to the same extent as silicon. There is an additional factor that lowers the ASP of silicon wafers. Presently, silicon wafers, alone, are available in 300 mm diameters, commercially. This is in sharp contrast to compound semiconductors. Even 200 mm wafer sizes are yet to achieve mainstream status. Greater diameters translate into greater surface area. This ultimately translates into greater yield. While the requirement for semiconductor materials increases proportionally to the square of the ratio of diameters; materials account for only a fraction of the overall manufacturing process cost. Other contributing factors to the manufacturing cost do not increase it to the same extent. It is always attractive, operationally, to work with larger diameters. The advantage of working with larger diameters is more pronounced for silicon wafers as the basic material cost is lower than that of compound semiconductors. Consequently, a comparable increase in yield is achieved with much lower incremental costs for silicon, compared to compound semiconductors.

For ASP movement, wafer manufacturers have historically resorted to a steady annual reduction in wafer prices followed by an occasional rise (once every few years) in response to rising input costs. This spike in prices is followed by a steady decline, yearly, which is expected as the input costs stabilize and manufacturers benefit from the depreciation of equipment. The spike in prices in 2018-2019 however, is expected to be sharp enough to keep prices on an even keel in 2023, compared to 2018 levels.

Make an enquiry before Buying: https://www.trendsmarketresearch.com/checkout/12649/Single