По какому принципу работают нейросети
Современные нейросети работают по нескольким основным принципам. Если описывать их максимально простым языком, то получится примерно следующее:
- В нейросеть загружается некоторое количество конкретных, необходимых для эксперимента или исследования, данных.
- Информация передается с помощью искусственных синапсов от искусственного нейрона к нейрону, от слоя к слою, каждый нейрон может иметь несколько входящих синапсов с данными.
- Данные, полученные каждым нейроном, представляют собой сумму всех данных, умноженных на коэффициент веса каждого искусственного синапса.
- Полученные значения формируют выходные сигналы, которые передаются до тех пор, пока информация не достигнет конечного выхода.
Все равно звучит сложно? Тогда попробуем упростить еще больше. В нейросеть, то есть в заранее созданную сложную математическую модель, как в пустую емкость, загружается массив данных. Это могут быть научные работы, литературные произведения, коллекции изображений и так далее.
Если загрузить в нейросеть собрания сочинений мировых литературных классиков, то на выходе она сможет написать собственный текст в стиле Шекспира — если максимально упрощать и утрировать. Аналогичным образом происходит генерация изображений: вы загружаете в нейросеть базу картинок в различных художественных стилях самых разных художников, а на выходе получаете совершенно новое изображение, созданное по мотивам загруженных данных.
Точно так же нейросети позволяют находить различные закономерности и совпадения при анализе огромных баз данных, например находить преступников или делать прогнозы на несколько лет вперед, основываясь на ранее полученных исследованиях.
Источник - https://rugpt.io/